

Open UserForm, Insert Listbox, Labels, Textboxes and

Command Button,

Change name of List box (MyDataList), command Buttons

(Like CmdSum, CmdMax, CmdMin, CmdAvg), text boxes from

Properties.

I am using “Data” sheet which have 500 Data.

Name of List Box is : DataListBox (Select Listbox and

Change the name from Properties)

Private Sub DataListDisplay()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rng As Range

 Set rng = ws.Range("A1:L" & lastRow)

 DataListBox.Clear

 DataListBox.List = rng.value

 TotRecord.Caption = "Total Records: " & lastRow - 1

 Dim TotalY, TotalN, TotalYN

 Dim i As Integer

 Dim YesNo As String

 YesNo = "Y"

 For i = 2 To lastRow

 If ws.Cells(i, 8).value = YesNo Then

 TotalY = TotalY + ws.Cells(i, "D").value

 Else

 TotalN = TotalN + ws.Cells(i, "D").value

 End If

 TotalYN = TotalYN + ws.Cells(i, "D").value

 Next i

 'AmtRecd.Caption = "Rs. " & Format(TotalY, "###,##0.00")

 ' AmtDues.Caption = "Rs. " & Format(TotalN, "###,##0.00")

 TotAmt.Caption = "Rs. " & Format(TotalYN, "###,##0.00")

End Sub

Definition of the Excel VBA command :

Dim ws As Worksheet Set ws = ThisWorkbook.Worksheets("Data")

Dim lastRow As Long lastRow = ws.Cells(ws.Rows.Count,

"A").End(xlUp).row

Dim rngAmount As Range Set rngAmount = ws.Range("D2:D" &

lastRow)

The above code snippet demonstrates how to work with worksheets, rows,

and ranges in Excel VBA. Here's a breakdown of each line:

Dim ws As Worksheet:

This line declares a variable named ws with the data type Worksheet.

It creates a reference to a specific worksheet within the workbook.

Set ws = ThisWorkbook.Worksheets("Data"):

This code defines a subroutine called DataListDisplay which populates a list

box (presumably named DataListBox) with data from an Excel worksheet. It

also calculates and displays total amounts based on certain conditions.

Here's a breakdown of the code:

DataListDisplay Subroutine:

The subroutine is triggered to initialize and populate the list box with data.

Worksheet and Range Setup:

The worksheet named "Data" in the current workbook is assigned to the ws

variable.

The code determines the last row with data in column A of the worksheet

using the .End(xlUp) method.

Populating the List Box:

A range rng is set to cover the columns A to L and rows 1 to lastRow

(including headers).

The data from the range rng is assigned to the .List property of the

DataListBox, populating it.

Total Record Count:

The caption of the TotRecord label is set to display the total number of

records (excluding the header row).

Calculating Totals:

Variables TotalY, TotalN, and TotalYN are declared to keep track of

calculated totals.

A loop iterates through rows (from 2 to lastRow) of the worksheet data.

If the value in column 8 (presumably indicating a "Yes" or "No") is "Y", the

corresponding amount from column "D" is added to TotalY.

If the value is not "Y", the amount is added to TotalN.

The amount is always added to TotalYN.

Caption Updates:

The captions of AmtRecd, AmtDues, and TotAmt labels are commented out,

but the last one is used to display the total amount (TotalYN) formatted as

currency.

In summary, this subroutine populates the list box with data, calculates and

displays total amounts based on certain conditions, and updates label

captions to show record counts and total amounts.

Command Button Name is CmdMax

Private Sub CmdMax_Click()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rngAmount As Range

 Set rngAmount = ws.Range("D2:D" & lastRow) ' Assuming Amount

column is column D

 Dim SumMax As Double

 SumMax = WorksheetFunction.Max(rngAmount)

 LblMax.Caption = "Maximum: Rs. " & Format(SumMax, "###,##0.00")

End Sub

This code defines a subroutine named CmdMax_Click which is executed

when the "Max" button (presumably named CmdMax) is clicked. The

subroutine calculates and displays the maximum value from a range of data

and updates a label (LblMax) with the result. Here's a breakdown of the code:

CmdMax_Click Subroutine:

This subroutine is triggered when the "Max" button is clicked.

Worksheet and Range Setup:

The worksheet named "Data" in the current workbook is assigned to the ws

variable.

The code determines the last row with data in column A of the worksheet

using the .End(xlUp) method.

Range Setup for Calculation:

A range rngAmount is set to cover column D from row 2 to the last populated

row (lastRow).

Calculating Maximum Value:

The WorksheetFunction.Max function is used to calculate the maximum

value from the rngAmount range.

The calculated maximum value is stored in the SumMax variable.

Updating Label Caption:

The caption of the LblMax label is updated to display the calculated

maximum value (SumMax) formatted as currency.

In summary, this subroutine calculates the maximum value from a specified

range of data in the "Data" worksheet, and then updates a label to display

the calculated maximum value.

Command Button Name is CmdMin

Private Sub CmdMin_Click()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rngAmount As Range

 Set rngAmount = ws.Range("D2:D" & lastRow) ' Assuming Amount

column is column D

 Dim SumMin As Double

 SumMin = WorksheetFunction.Min(rngAmount)

 LblMin.Caption = "Minimum: Rs. " & Format(SumMin, "###,##0.00")

End Sub

CmdMin_Click Subroutine:

This subroutine is triggered when the "Min" button is clicked.

Worksheet and Range Setup:

The worksheet named "Data" in the current workbook is assigned to the ws

variable.

The code determines the last row with data in column A of the worksheet

using the .End(xlUp) method.

Range Setup for Calculation:

A range rngAmount is set to cover column D from row 2 to the last populated

row (lastRow).

Calculating Minimum Value:

The WorksheetFunction.Min function calculates the minimum value from the

rngAmount range.

The calculated minimum value is stored in the SumMin variable.

Updating Label Caption:

The caption of the LblMin label is updated to display the calculated minimum

value (SumMin) formatted as currency.

In summary, this subroutine calculates the minimum value from a specified

range of data in the "Data" worksheet and then updates a label to display the

calculated minimum value.

Command Button name is CmdSum

Private Sub CmdSum_Click()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rngAmount As Range

 Set rngAmount = ws.Range("D2:D" & lastRow) ' Assuming Amount

column is column D

 Dim sumAmount As Double

 sumAmount = WorksheetFunction.Sum(rngAmount)

 LblSum.Caption = "Sum: Rs. " & Format(sumAmount, "###,##0.00")

End Sub

This code defines a subroutine named CmdSum_Click that is triggered when

the "Sum" button (likely named CmdSum) is clicked. The subroutine

calculates and displays the sum of values from a specified range of data,

updating a label (LblSum) with the result. Here's a breakdown of the code:

CmdSum_Click Subroutine:

This subroutine is executed when the "Sum" button is clicked.

Worksheet and Range Setup:

The worksheet named "Data" in the current workbook is assigned to the ws

variable.

The code determines the last row with data in column A of the worksheet

using the .End(xlUp) method.

Range Setup for Calculation:

A range rngAmount is set to cover column D from row 2 to the last populated

row (lastRow).

Calculating Sum:

The WorksheetFunction.Sum function calculates the sum of values from the

rngAmount range.

The calculated sum is stored in the sumAmount variable.

Updating Label Caption:

The caption of the LblSum label is updated to display the calculated sum

(sumAmount) formatted as currency.

In summary, this subroutine calculates the sum of values from a specified

range of data in the "Data" worksheet and updates a label to display the

calculated sum.

Command Button Name is CmdAverage

Private Sub CmdAverage_Click()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rngAmount As Range

 Set rngAmount = ws.Range("D2:D" & lastRow) ' Assuming Amount

column is column D

 Dim sumAve As Double

 sumAve = WorksheetFunction.Average(rngAmount)

 LblAve.Caption = "Average: Rs. " & Format(sumAve, "###,##0") & "/-"

End Sub

This code calculates the average of values in a specified range ("D2:D" &

lastRow) in the "Data" worksheet and displays the result in a label (LblAve)

on the user form. Here's a breakdown of the code:

Worksheet Setup:

The code specifies the "Data" worksheet to work with using the ws variable.

Last Row Calculation:

The code determines the last used row in column A of the "Data" worksheet

(lastRow). This is often used to establish the range of data.

Setting Range:

A range (rngAmount) is defined to represent column D ("Amount") from row

2 to the last row.

Calculating Average:

The WorksheetFunction.Average function is used to calculate the average

of the values within the specified range (rngAmount).

The calculated average is stored in the sumAve variable.

Displaying Average:

The LblAve.Caption is updated with the calculated average value.

The Format function is used to format the average as a currency value with

commas and a "/-" symbol at the end.

The purpose of this code is to provide functionality to calculate the average

of values in a specific column ("Amount") of the "Data" worksheet and display

the result in a user interface element (LblAve).

Command Button Name is CmsFind

Private Sub CmdFind_Click()

 Dim searchTerm As String

 searchTerm = TextBoxSearch.Text

 Dim foundIndex As Long

 foundIndex = -1

 ' Loop through ListBox items to find a match

 For i = 0 To DataListBox.ListCount - 1

 For j = 0 To DataListBox.ColumnCount - 1

 If DataListBox.List(i, j) = searchTerm Then

 foundIndex = i

 Exit For

 End If

 Next j

 If foundIndex >= 0 Then

 Exit For

 End If

 Next i

 If foundIndex >= 0 Then

 DataListBox.Selected(foundIndex) = True

 DataListBox.TopIndex = foundIndex ' Scroll to the found item

 MsgBox searchTerm & " is found at index: " & foundIndex

 Else

 MsgBox searchTerm & " not found."

 End If

This code defines a subroutine named CmdFind_Click that is executed when

the "Find" button (presumably named CmdFind) is clicked. The subroutine

searches for a specific term entered in a TextBox within a ListBox and

provides feedback about the search result. Here's a step-by-step explanation

of the code:

CmdFind_Click Subroutine:

This subroutine is triggered when the "Find" button is clicked.

Search Term Setup:

The content of the TextBox named TextBoxSearch is assigned to the

searchTerm variable. This is the term you want to search for in the ListBox.

Initialization of foundIndex:

The foundIndex variable is initialized to -1. This variable will be used to store

the index of the found item in the ListBox.

Looping Through ListBox Items:

Two nested loops iterate through each cell in the ListBox's rows and

columns.

The DataListBox.List(i, j) syntax accesses the value in the i-th row and j-th

column of the ListBox's data.

Finding a Match:

If a match is found between the current ListBox cell's value and the

searchTerm, the foundIndex is set to the index of the matching row.

The Exit For statement terminates the inner loop once a match is found.

Exiting the Loop:

If a match is found (foundIndex >= 0), the outer loop is also exited using

another Exit For statement.

Displaying Search Result:

If a match is found, the corresponding item in the ListBox is selected and the

ListBox is scrolled to make the item visible.

A message box displays the search term and the index of the found item.

If no match is found, a message box informs the user that the search term

was not found.

In summary, this subroutine allows the user to search for a specific term

within a ListBox, highlights the matching item if found, and provides feedback

about the search result using message boxes.

Below code is the Continue from above code…

Dim wsProd As Worksheet

 Set wsProd = ThisWorkbook.Worksheets("Product_Master")

 Dim lastProdRow As Long

 lastProdRow = wsProd.Cells(wsProd.Rows.Count, "A").End(xlUp).row

 Dim rngProd As Range

 Set rngProd = wsProd.Range("A2:B" & lastProdRow)

 Dim wsCust As Worksheet

 Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastCustRow As Long

 lastCustRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xlUp).row

 Dim rngCust As Range

 Set rngCust = wsCust.Range("A2:B" & lastCustRow)

 Dim wsSR As Worksheet

 Set wsSR = ThisWorkbook.Worksheets("SR_Master")

 Dim lastSRRow As Long

 lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xlUp).row

 Dim rngsr As Range

 Set rngsr = wsSR.Range("A2:B" & lastSRRow)

 LblCustID.Caption = DataListBox.List(DataListBox.ListIndex, 0)

 LblInvNo.Caption = DataListBox.List(DataListBox.ListIndex, 1)

 LblInvDate.Caption = DataListBox.List(DataListBox.ListIndex, 2)

 LblInvAmt.Caption = "Rs. " &

Format(DataListBox.List(DataListBox.ListIndex, 3), "###,##0.00")

 LblProdID.Caption = DataListBox.List(DataListBox.ListIndex, 5)

 LBLSRID.Caption = DataListBox.List(DataListBox.ListIndex, 8)

 Dim LblPName As String, TxtCustName As String, TxtSRName As String

 For k = 1 To lastCustRow

 If wsCust.Cells(k, 1).value = LblCustID.Caption Then

 'If wsCust.Cells(i, 8).value = "Y" Then

 'TotalProdY = TotalProdY + wsCust.Cells(i, "D").value

 'Else

 'TotalProdN = TotalProdN + wsCust.Cells(i, "D").value

 'End If

 TxtCustName = wsCust.Cells(k, "B").value

 End If

 'TotalProdYN = TotalProdYN + TotalProdY

 Next k

 LblCName.Caption = "- " & TxtCustName

 For i = 1 To lastProdRow

 If wsProd.Cells(i, 1).value = LblProdID.Caption Then

 'If wsCust.Cells(i, 8).value = "Y" Then

 'TotalProdY = TotalProdY + wsCust.Cells(i, "D").value

 'Else

 'TotalProdN = TotalProdN + wsCust.Cells(i, "D").value

 'End If

 LblPName = wsProd.Cells(i, "B").value

 End If

 'TotalProdYN = TotalProdYN + TotalProdY

 Next i

 LblProdName.Caption = "- " & LblPName

 For j = 1 To lastSRRow

 If wsSR.Cells(j, 1).value = LBLSRID.Caption Then

 'If wsCust.Cells(i, 8).value = "Y" Then

 'TotalProdY = TotalProdY + wsCust.Cells(i, "D").value

 'Else

 'TotalProdN = TotalProdN + wsCust.Cells(i, "D").value

 'End If

 TxtSRName = wsSR.Cells(j, "B").value

 End If

 'TotalProdYN = TotalProdYN + TotalProdY

 Next j

 LblSRName.Caption = "- " & TxtSRName

End Sub

This code appears to be part of a subroutine that updates various labels on

a user form based on the selected item in a ListBox. Here's a breakdown of

the code:

Worksheets Setup:

Separate worksheets are defined for "Product_Master," "Customer_Master,"

and "SR_Master."

Last rows for each worksheet are calculated to determine the range of data.

Setting Ranges:

Ranges (rngProd, rngCust, and rngsr) are defined to represent the relevant

columns for each respective worksheet.

Setting Label Captions:

The code proceeds to update various labels on the user form based on the

selected item in the ListBox (DataListBox).

Updating Labels for Customer Information:

The LblCustID.Caption is updated with the value from the first column

(Column A) of the selected item.

The LblCName.Caption is updated with the corresponding customer name

fetched from the "Customer_Master" worksheet using a loop.

Updating Labels for Product Information:

The LblProdID.Caption is updated with the value from the sixth column

(Column F) of the selected item.

The LblProdName.Caption is updated with the corresponding product name

fetched from the "Product_Master" worksheet using a loop.

Updating Labels for Sales Representative Information:

The LBLSRID.Caption is updated with the value from the ninth column

(Column I) of the selected item.

The LblSRName.Caption is updated with the corresponding sales

representative name fetched from the "SR_Master" worksheet using a loop.

Label Formatting:

Each label's caption is prefixed with a dash (" - ") for visual separation.

Looping Through Worksheet Data:

The loops through the customer, product, and sales representative data use

variables (k, i, and j) to iterate through rows.

If a match is found between the identifier in the ListBox and the data in the

respective worksheet, the corresponding name is fetched.

The purpose of this code is to display additional details related to the

selected item in the ListBox using information stored in different worksheets.

The customer name, product name, and sales representative name are

fetched based on the identifiers associated with the selected item. The

fetched names are then displayed with appropriate labels on the user form.

Listbox Name is DataListBox

Private Sub DataListDisplay()

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Data")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).row

 Dim rng As Range

 Set rng = ws.Range("A1:L" & lastRow) ' Assuming data starts from A2

 DataListBox.Clear

 DataListBox.List = rng.value

 TotRecord.Caption = "Total Records: " & lastRow - 1

 Dim TotalY, TotalN, TotalYN

 Dim i As Integer

 Dim YesNo As String

 YesNo = "Y"

 For i = 2 To lastRow

 If ws.Cells(i, 8).value = YesNo Then

 TotalY = TotalY + ws.Cells(i, "D").value

 Else

 TotalN = TotalN + ws.Cells(i, "D").value

 End If

 TotalYN = TotalYN + ws.Cells(i, "D").value

 Next i

 TotAmt.Caption = "Rs. " & Format(TotalYN, "###,##0.00")

End Sub

This code populates a list box (DataListBox) with data from a specific

worksheet and range. It also calculates and displays the sum of "Amount"

values based on a condition in the "Data" worksheet. Here's an explanation

of the code:

Worksheet Setup:

The code sets up the "Data" worksheet to work with using the ws variable.

Last Row Calculation:

The last used row in column A of the "Data" worksheet is determined

(lastRow).

Setting Range and Populating List Box:

The range of data (rng) is defined to cover columns A to L, from row 1 to the

last row.

The code clears any existing items in the DataListBox and then populates it

with data from the defined range.

Displaying Total Records:

The TotRecord label caption is updated with the count of total records in the

"Data" worksheet.

Calculating and Displaying Totals:

The code initializes variables to keep track of totals: TotalY, TotalN, and

TotalYN.

A loop runs from row 2 to the last row of the "Data" worksheet.

If the value in column H ("Payment_Status") is "Y," the corresponding

"Amount" value (column D) is added to TotalY. Otherwise, it's added to

TotalN.

The "Amount" value is always added to TotalYN.

After the loop, the TotAmt label caption is updated to display the total of all

"Amount" values (TotalYN) formatted as currency.

This code effectively populates the list box with data and calculates and

displays the total "Amount" values based on the specified conditions.

Private Sub Label3_Click()

 Unload Me

End Sub

Private Sub UserForm_Initialize()

 DataListDisplay

End Sub

These event procedures are part of a UserForm in Excel VBA. Let's break

down what each procedure does:

Label3_Click:

This event procedure is triggered when the user clicks on Label3 in the

UserForm.

Label3 is typically used as a close or exit button.

The code uses the Unload Me statement to close the UserForm.

UserForm_Initialize:

This event procedure is triggered when the UserForm is initialized, i.e., when

it is shown to the user.

The DataListDisplay subroutine is called within this event procedure.

DataListDisplay is presumably a subroutine that populates the UserForm's

list box with data.

In summary, when the UserForm is initialized, it automatically populates the

list box with data using the DataListDisplay subroutine. If the user clicks on

Label3, the UserForm is closed. This provides a simple way to display data

and close the UserForm when needed.

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

