

Designing a Customer Master Entry Form:

Validation and Duplicate Entry Prevention

Discover how to create a robust Customer Master Entry Form that

ensures data accuracy and prevents duplicate entries. In this tutorial,

we'll guide you through the process of designing a user-friendly form

for entering customer details. Learn how to implement validation rules

that validate user input and enforce data integrity. We'll also show you

step-by-step how to prevent duplicate entries using smart coding

techniques. By the end of this video, you'll have the skills to build an

efficient, error-free data entry system. Don't miss this opportunity to

enhance your coding and form design skills!

Getting Started with Designing a Customer Master Entry Form

Description: Embarking on the journey of creating a Customer Master Entry Form?

This video tutorial is your perfect guide. Learn the foundational steps to design an

effective form for entering customer details. From layout planning to choosing the

right input fields, we'll walk you through the essential elements of form design. Get

ready to create a user-friendly and visually appealing form that streamlines data

entry. Whether you're a beginner or looking to enhance your design skills, this

tutorial is your first step towards crafting a professional Customer Master Entry

Form.

When designing a form using Excel VBA, you can use a combination of built-in Excel

features and the VBA programming environment. Here are the tools you'll need:

Microsoft Excel: Microsoft Excel itself serves as the primary environment for designing

and building forms using VBA. It provides the necessary tools for creating user interfaces

and working with data.

UserForm Designer: Excel includes a UserForm designer that allows you to create

customized forms with various controls such as textboxes, buttons, checkboxes, list

boxes, and more. You can access the UserForm designer by opening the Visual Basic

for Applications (VBA) editor and inserting a UserForm.

Visual Basic for Applications (VBA) Editor: The VBA editor within Excel is where you

write the code that powers your UserForm. It provides a code window for writing event

handlers, procedures, and functions that control the behavior of your form.

Controls Palette: The UserForm designer includes a controls palette that allows you to

drag and drop controls onto the form. You can customize these controls' properties and

link them to VBA code.

Code Editor: The VBA editor provides a code editor where you write VBA code to handle

form events, validate input, and perform other actions.

Programming Language Documentation: Access to VBA documentation, tutorials, and

forums can provide guidance on writing code and handling form-related tasks.

Testing Environment: Excel itself serves as your testing environment. You can run your

UserForm from the VBA editor to see how it behaves and make necessary adjustments.

Graphics Software (Optional): If you want to include custom graphics or icons on your

form, you can use graphics software like Adobe Photoshop or similar tools.

With Excel's built-in tools and the VBA programming environment, you have everything

you need to design and develop forms for data entry and user interaction.

A toolbox is an indispensable resource that empowers developers to create software

efficiently, consistently, and with enhanced functionality. It enables them to harness the

power of pre-built components while also fostering creativity and innovation in application

development.

Save the Excel workbook as “Excel Macro Enabled Workbook”

A macro-enabled sheet refers to an Excel workbook that contains macros, which are

scripts or recorded actions that automate tasks in Excel. These macros are written in the

Visual Basic for Applications (VBA) programming language and can perform a wide range

of actions, from automating repetitive tasks to enhancing the functionality of Excel.

A macro-enabled sheet is typically saved with the ".xlsm" file extension. The "m" in ".xlsm"

stands for "macro-enabled." When you open a macro-enabled sheet, Excel may prompt

you to enable macros if they are disabled in your Excel settings. Enabling macros allows

the workbook's code to run and automate various actions.

Before you start coding, it's important to select the referenced library mentioned above

All the necessary tools are available in the Toolbox window, and make sure to set

the properties for the selected tools.

Importance of Naming the tools

Naming your tools, such as TextBoxes, ListBoxes, and CommandButtons, is

important for several reasons in programming, including VBA (Visual Basic for

Applications) development. Proper naming enhances the readability,

maintainability, and overall organization of your code. Here's why naming is

important and how to name your tools effectively:

Readability and Understanding: Descriptive names make it clear what each tool is

used for. When you or others read the code, it's easier to understand the purpose

of each element without needing to refer back to the form or document.

Maintainability: Well-named tools make it easier to maintain and update your

code. If you need to make changes or debug an issue, you can quickly identify which

element is involved and make modifications accordingly.

Avoiding Confusion: Meaningful names prevent confusion when you have multiple

tools on a form or within your project. This is particularly important as projects

grow in complexity.

Collaboration: If you're working on a project with others, having clear names

ensures everyone is on the same page and understands the structure of the code.

Code Reusability: Good naming conventions help you identify opportunities for

code reuse. You can more easily spot patterns and elements that can be reused in

different parts of your code.

Tips for Naming Tools:

Use Descriptive Names: Choose names that accurately describe the purpose of the

tool. For example, if you have a TextBox for entering customer names, you might

name it "TxtCustomerName."

Use Camel Case: Capitalize the first letter of each word in the name (except the

first word) to enhance readability. For example, "TxtCustomerName."

Include the Type: Include a prefix that indicates the type of tool. For example, "Txt"

for TextBox, "Lst" for ListBox, and "Cmd" for CommandButton.

Be Consistent: Use a consistent naming convention throughout your project. This

helps maintain a uniform structure and makes your code more predictable.

Avoid Abbreviations: While concise names are important, avoid excessive

abbreviations that might make the name unclear. Strive for a balance between

brevity and clarity.

Use Intuitive Names: Choose names that would make sense to someone else

reading your code. Avoid using jargon or overly creative names that might confuse

others.

Consider Context: If your project involves multiple forms or sections, consider

including some context in the name. For example, "FrmCustomerNameTxt" for a

TextBox on the "Customer Name" form.

Refactor as Needed: As your project evolves, you might find that certain names

need adjustment. Don't hesitate to refactor your code to improve naming clarity.

By following these naming conventions, you'll enhance the readability,

maintainability, and overall quality of your VBA code and make it easier for yourself

and others to work with the tools and elements in your forms and projects.

Designing a UserForm in VBA

Designing a UserForm in VBA involves creating an interface that is user-friendly,

visually appealing, and efficient to navigate. Here are some tips to consider when

designing a UserForm:

Plan the Layout: Before you start designing, plan the layout of your UserForm.

Decide where each control (TextBoxes, Labels, Buttons, etc.) will be placed and how

they will be organized.

Keep It Simple: Avoid cluttering the UserForm with too many controls. Keep the

design clean and focused on the essential information and actions.

Consistent Alignment: Maintain a consistent alignment for controls. Align controls

vertically and horizontally to create a neat and organized appearance.

Use Grouping: Group related controls together using frames or labels to visually

organize the form and make it easier for users to understand the content.

Proper Labeling: Use clear and concise labels for each control. Labels should

describe the purpose of the control or provide instructions to the user.

Readable Font and Size: Choose a readable font and an appropriate font size for

labels and controls. Avoid using fonts that are too small or difficult to read.

Use White Space: Leave enough white space between controls to prevent a

cluttered appearance. White space improves readability and makes the form more

visually appealing.

Logical Flow: Arrange controls in a logical order that follows the user's expected

interaction flow. For example, place navigation buttons (Next, Previous) in a

consistent location.

Use Color Thoughtfully: Use color to draw attention to important controls or

sections, but avoid overwhelming the form with too many colors. Stick to a color

scheme that is easy on the eyes.

Error Handling: If your form involves user input, consider including error handling

mechanisms like error messages or tooltips to guide users in case of input errors.

Responsive Design: Design the form to be responsive, meaning it should look and

function well on different screen sizes and resolutions.

Icons and Images: If appropriate, use icons or images to make the form visually

appealing and to help users understand the purpose of certain controls.

Use User-Friendly Names: As mentioned earlier, name your controls with user-

friendly and descriptive names that convey their purpose.

Test the Form: Test the UserForm as a user would. Ensure that controls are working

as intended and that the navigation is smooth.

Feedback and Validation: Provide feedback to users when they perform actions.

For instance, show a message when data is successfully submitted or a record is

updated.

Focus Control: Set the initial focus on the most relevant control, such as the first

input field, for easy navigation.

Resize and Rescale: If your UserForm might be used on different computers or

monitors, make sure it resizes and rescales properly to fit various screen sizes.

Remember that UserForm design is not just about aesthetics; it's about creating

a functional and user-friendly interface that enhances the user experience.

Regularly seek feedback from users to identify areas for improvement and

refinement.

Checklist of things to keep in mind

Before creating a Customer Master Entry Form in Excel VBA, there are several

important factors to consider. Here's a checklist of things to keep in mind:

Data Requirements: Determine the fields and information you need to collect from

customers. This may include customer name, address, contact details, account

type, etc.

User Interface: Design a user-friendly interface that makes it easy for users to input

and manage customer data. Consider using labels, textboxes, dropdowns, and

other controls for a clear layout.

Data Validation: Implement validation for the data entered by users. Ensure that

required fields are filled, and provide error messages for incorrect or incomplete

entries.

Data Storage: Decide where and how the customer data will be stored. You can use

Excel worksheets, Access databases, or other data storage methods.

Data Security: If the customer data contains sensitive information, implement

security measures to protect it from unauthorized access.

User Access and Permissions: Determine who will have access to the Customer

Master Entry Form and what level of permissions they will have.

Functionality: Define the functionality you want in the form, such as adding new

customers, editing existing records, deleting records, and navigating through

records.

User Experience: Focus on creating a smooth and intuitive user experience. Ensure

that the form is easy to navigate and understand.

Error Handling: Plan for error handling mechanisms to inform users about errors

and guide them to correct the issues.

Buttons and Actions: Decide on the necessary buttons and actions for the form.

Common buttons include "Add New," "Save," "Edit," "Delete," "Navigate," and

"Close."

Data Integrity: Implement measures to ensure data integrity, such as avoiding

duplicate entries and maintaining consistent data formats.

Backup and Recovery: Have a backup plan in place in case of data loss. Regularly

backup the data to prevent any major disruptions.

Testing: Thoroughly test the form before deploying it. Check all functionalities, data

entry scenarios, error handling, and user interactions.

Documentation: Document the form's purpose, functionality, and usage guidelines

for future reference.

As for the number of command buttons, it depends on the features and

functionality you want to provide in the form. Here are a few common command

buttons that could be included:

Add New: Adds a new customer record to the database.

Edit: Allows users to edit an existing customer record.

Save: Saves the data entered or edited.

Delete: Deletes a selected customer record (consider providing a confirmation

prompt).

Navigate: Provides navigation options to move through the customer records.

Close: Closes the form.

Search: Enables users to search for specific customer records.

Clear: Clears the form fields for entering new data.

Refresh: Reloads the data or form.

Ultimately, the number and type of buttons will depend on your specific

requirements and the functionality you want to offer to users. It's important to

strike a balance between providing essential actions and keeping the form

uncluttered.

Ensure to list the following column names exactly as provided in the

'Customer_Master' sheet to avoid any program error messages.

Cust_ID
Cust_Name
Cust_Address
Cust_City
Cust_PIN
Cust_State

Please make sure to use the exact names for the Textboxes, Listbox,

Command Buttons, etc. Otherwise, the program might display an error

message.

(Name of Textbox, ListBox and Option Button)

 TxtCustID

 TxtCustName

 TxtCustAdd

 TxtCustCity

 StatesList (ListBox)

 TxtCustPin

 TxtCustPhone

 TxtCustEmail

 TxtCustPan

 TxtCustStateCode

 TxtCustGstin

Cust_Phone
Cust_Email
Cust_PAN
Cust_State_Code
Cust_GSTIN
Cust_Type
SR_ID
Cust_Tag

 CustSD (Option Button)

 CustSC (Option Button)

 TxtSRID

(Name of Command Button)

Add : CmdAdd

Save : CmdSave

Cancel : CmdCancel

Close : CommandButton1

MsgBox 1 : CmdMsgboxText

Msgbox 2 : CmdDataReview

Print Word : CmdAckPrint

Ms-Word Table : CmdPrint

Writing code involves a systematic process to ensure your code is organized,

readable, and functional. Here's a step-by-step procedure to help you get started:

Understand the Objective: Clearly understand what your code needs to achieve.

Break down the task into smaller steps if necessary.

Plan Your Logic: Plan the logic of how you'll accomplish the task. Consider the flow,

conditions, loops, and variables you'll need.

Open the Code Window: In your development environment (e.g., Excel VBA

Editor), open the code window for the object you're working with (e.g., a module,

worksheet, or userform).

Start with a Subroutine or Function Declaration: If you're writing a new subroutine

(a block of code that performs a specific task), start with a declaration. For example:

Private Sub MySubroutine()

If you're writing a function (returns a value), use:

Private Function MyFunction() As DataType

Private Sub MySubroutine(): Add comments to describe what your code will do.

Use comments to provide context and explanations for complex parts.

Write the Code: Start writing the actual code based on your planned logic. Make

sure to use proper indentation and formatting to improve readability.

Use Variables: Declare and use variables to store and manipulate data. Choose

meaningful variable names for clarity.

Implement Control Structures: Use control structures like If...Then...Else, For and

Do loops, Select Case, etc., as needed.

Handle Errors: Implement error handling using constructs like On Error Resume

Next or On Error GoTo to handle unexpected errors gracefully.

Test Incrementally: Test your code frequently as you write it. Run it step-by-step

using breakpoints, and monitor variable values to ensure they're as expected.

Refactor and Optimize: Once your code works, review it for areas where you can

make it more efficient or concise. Remove duplicate code and ensure best

practices.

Document Your Code: Provide comments to explain complex sections,

assumptions, and any dependencies. Good documentation helps others

understand your code.

Run and Debug: Run the code in your application. Debug and fix any errors or

unexpected behavior. Use breakpoints, watches, and the Immediate window for

debugging.

Test Thoroughly: Test your code under various scenarios to ensure it works as

expected. Include edge cases and boundary conditions.

Final Review: Review your code one last time for readability, logic, and efficiency.

Make any necessary adjustments.

Save and Share: Save your code and back it up. If you're collaborating, share your

code with others and ensure they understand it.

Remember that practice makes perfect. The more you write code, the

more comfortable you'll become with the process. Additionally, don't

hesitate to refer to documentation, tutorials, and examples when you

encounter challenges or want to learn new techniques.

Now Design the Form, Copy and Paste the code in the Code Window.

Save the Project (Save the Excel workbook as “Excel Macro Enabled

Workbook”. Sheet Name should be : “Customer_Master”

Where to save your projects…

Where to save your projects and workbooks depends on your workflow and

preferences. Here are some tips to help you decide where to save your

projects and how to organize them effectively:

Create a Dedicated Folder: Start by creating a dedicated folder on your

computer or a network drive to store all your projects. This helps keep your

projects organized and easily accessible.

Subfolders for Each Project: Within your main projects folder, create

subfolders for each individual project. This prevents clutter and makes it easy

to locate specific projects.

Project Naming Convention: Give your projects meaningful and descriptive

names. This helps you quickly identify what each project is about.

Use Version Control: If you're working on larger projects or collaborating

with others, consider using version control systems like Git. These systems

track changes, help with collaboration, and provide a history of your code.

Backup Regularly: Regularly back up your projects to prevent data loss.

Use external drives, cloud storage, or dedicated backup software.

Use Cloud Storage: Cloud storage services like Google Drive, Dropbox, or

OneDrive can be useful for storing and syncing your projects across devices.

Save Your Workbook: For Excel projects, save your workbook in the project

folder. You can create a subfolder within your project folder to store related

files (e.g., data files, images).

Organize Files: Within your project folder, organize files into relevant

subfolders. For example, keep code files separate from data files.

Backup Code: Regularly save your code in separate text files (e.g., .txt files)

outside the workbook. This ensures you have a backup even if the workbook

becomes corrupted.

Use Descriptive File Names: Give your files descriptive names that reflect

their content. This makes it easier to find what you need later.

Document Your Projects: Create a README.txt or README.md file in

your project folder to document project details, instructions, and

dependencies.

Versioning: If your project has multiple versions, consider appending

version numbers or dates to the project folder or file names.

Clean Up Unused Files: Regularly review your projects and remove any

unused or unnecessary files to keep things organized.

Keep It Consistent: Establish a consistent folder structure and naming

convention to make it easier to manage and locate your projects.

Personalize Your Workflow: Ultimately, find an organization method that

works best for you and suits your workflow.

Remember that organization is key to maintaining your projects and

making them easy to manage and share. Whether you're working on

personal projects or collaborating with others, a well-organized file

structure can save you time and reduce frustration.

Now Start Coding:

UserForm_Initialize:

UserForm_Initialize is a special event procedure in Excel VBA that is automatically

triggered when a UserForm is initialized or loaded. It is a built-in event that allows you to

perform specific actions or set initial values when a UserForm is displayed to the user.

When you open or display a UserForm, Excel VBA automatically looks for a procedure

named UserForm_Initialize within the code module of that UserForm. If such a procedure

exists, it will be executed before the UserForm becomes visible to the user.

How to …. Watch Videos for Live Example

Learn VBA Coding for Excel | How to Start Excel with VBA | Part 01 :

https://youtu.be/dW2Zt--Xddo

The VBA code should always begin with "Private Sub ...()" and end with

"End Sub" to define the start and end of a subroutine or event procedure.

If you have any queries, please visit our "Contact Us" page.

https://youtu.be/dW2Zt--Xddo

Private Sub UserForm_Initialize()

 CmdSave.Enabled = False

 txtFieldsDisabled

 TxtLength

 TxtBoxBlank

 PopulateStatesList

 lblDate.Caption = "Today is " & Format(Date, "dddd") & ", Date: " & Format(Date,

"dd/mm/yyyy")

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).Row

 Dim rng As Range

 Set rng = ws.Range("A2:M" & lastRow) ' Assuming data starts from A2

 ListBox1.Clear

 ListBox1.List = rng.Value

 End Sub

The UserForm_Initialize event procedure is a powerful tool within Excel VBA that is

automatically activated when a UserForm is loaded. It plays a crucial role in setting up

the UserForm's initial state, enhancing user experience, and preparing data for

interaction. In this particular example:

CmdSave.Enabled = False ensures that a "Save" button remains disabled initially,

allowing the user to fill in required data before enabling the save action.

txtFieldsDisabled presumably handles the disabling of certain text fields to restrict user

input until specific conditions are met.

TxtLength and TxtBoxBlank likely enforce validation rules by checking the length and

empty status of textboxes respectively, ensuring valid inputs.

PopulateStatesList populates a dropdown or list with states, making it convenient for

users to select from predefined options.

lblDate.Caption dynamically generates and displays the current date in a label,

enhancing the form's real-time information.

A worksheet named "Customer_Master" is accessed from the workbook.

The code calculates the last used row in column A of the "Customer_Master" sheet,

ensuring that the UserForm updates with the latest data.

A range of data (columns A to M) is captured from rows 2 to the last used row,

populating a list box (ListBox1) with relevant information.

In essence, this UserForm_Initialize procedure orchestrates a synchronized set of

actions as the UserForm is initialized. It ensures the UserForm is armed with the

necessary controls, data, and validation mechanisms, guaranteeing a smooth user

experience while enhancing data accuracy and integrity.

Call this procedure to UserForm_initialized event (txtFieldsEnabled)

Sub txtFieldsEnabled()

 TxtCustID.Enabled = True

 TxtCustName.Enabled = True

 TxtCustAdd.Enabled = True

 TxtCustCity.Enabled = True

 TxtCustPin.Enabled = True

 TxtCustPhone.Enabled = True

 TxtCustEmail.Enabled = True

 TxtCustPan.Enabled = True

 TxtCustStateCode.Enabled = True

 TxtCustGstin.Enabled = True

 TxtSRID.Enabled = True

 StatesList.Enabled = True

 CustSD.Enabled = True

 CustSC.Enabled = True

End Sub

The provided code defines a subroutine named txtFieldsEnabled that seemingly pertains

to enabling a set of textboxes and controls within a UserForm. This subroutine is likely

utilized in scenarios where user input is permitted or required. Each control mentioned is

enabled, granting users the ability to interact with and input data.

Here's a brief description of the code's purpose:

The txtFieldsEnabled subroutine serves to enable multiple textboxes and controls within

a UserForm at once. This action allows users to input data or make selections within

those controls. It is a convenient way to transition from a state where input is restricted to

one where users can interact with the form's elements. This subroutine proves valuable

in scenarios where you want to give users the capability to provide information or make

selections after certain conditions have been met.

For instance, if the UserForm initially opens with some fields disabled and requires users

to perform specific actions before enabling those fields, this subroutine can be invoked to

activate those fields once those conditions are satisfied. This enhances user-friendliness

by dynamically adapting the UserForm's functionality based on user actions or data

availability.

Call this procedure to UserForm_initialized event (TxtLength)

Sub TxtLength()

 TxtCustID.MaxLength = 3

 TxtCustName.MaxLength = 25

 TxtCustAdd.MaxLength = 30

 TxtCustCity.MaxLength = 25

 TxtCustPin.MaxLength = 6

 TxtCustPhone.MaxLength = 10

 TxtCustEmail.MaxLength = 40

 TxtCustPan.MaxLength = 10

 TxtCustStateCode.MaxLength = 2

 TxtCustGstin.MaxLength = 15

 TxtSRID.MaxLength = 4

End Sub

The provided code snippet defines a subroutine named TxtLength that appears to be

related to setting the maximum lengths (character limits) for various textboxes within a

UserForm. This subroutine is likely intended to enforce character restrictions on user

input, preventing entries that exceed predefined lengths. Here's a description of the

code's function:

The TxtLength subroutine is responsible for limiting the maximum number of characters

that users can input into specific textboxes within a UserForm. Each textbox mentioned

in the code snippet has its MaxLength property set to a certain value. This property

dictates the maximum number of characters that can be entered into the respective

textbox.

For instance, if TxtCustName.MaxLength is set to 25, users will only be able to enter up

to 25 characters in the "Customer Name" textbox. Similarly, the code sets character limits

for other fields like address, city, PIN code, phone number, email, and more.

By implementing this subroutine, you ensure that users cannot input excessive text that

could potentially disrupt the layout of the form or exceed the available space. It helps

maintain consistent formatting and aids in data validation by preventing input that doesn't

adhere to specified length requirements.

Call this procedure to UserForm_initialized event (TxtBoxBlank)

Sub TxtBoxBlank()

 TxtCustID.Text = ""

 TxtCustName.Text = ""

 TxtCustAdd.Text = ""

 TxtCustCity.Text = ""

 TxtCustPin.Text = ""

 TxtCustPhone.Text = ""

 TxtCustEmail.Text = ""

 TxtCustPan.Text = ""

 TxtCustStateCode.Text = ""

 TxtCustGstin.Text = ""

 TxtSRID.Text = ""

 Label29.Caption = ""

 Label30.Caption = ""

 Label31.Caption = ""

 Label32.Caption = ""

 Label33.Caption = ""

 Label34.Caption = ""

 Label35.Caption = ""

 Label36.Caption = ""

 Label37.Caption = ""

 Label38.Caption = ""

 Label39.Caption = "

End Sub

The provided code snippet defines a subroutine named TxtBoxBlank that seems to be

related to clearing the content of various textboxes and labels within a UserForm. This

subroutine is likely used to reset or initialize the form's input fields and associated labels

to empty states. Here's a description of the code's function:

The TxtBoxBlank subroutine serves the purpose of clearing the contents of multiple

textboxes and labels within a UserForm. Each textbox specified in the code (TxtCustID,

TxtCustName, etc.) is reset to an empty state using the .Text property, effectively

removing any existing input.

In addition to textboxes, the subroutine also seems to clear the captions of various labels

(e.g., Label29, Label30, etc.), possibly associated with error messages, warnings, or

information display.

By utilizing this subroutine, you provide users with a convenient way to clear all input

fields and reset any displayed messages, allowing them to start fresh or make corrections

without the need to manually delete each entry. This enhances user experience and can

be particularly useful in situations where users want to re-enter data or correct mistakes

easily.

Call this procedure to UserForm_initialized event (PopulateStatesList)

Sub PopulateStatesList()

 Dim statesArray As Variant

 statesArray = Array("Andhra Pradesh", "Arunachal Pradesh", "Assam", "Bihar",

"Chhattisgarh", "Goa", "Gujarat", _

 "Haryana", "Himachal Pradesh", "Jharkhand", "Karnataka", "Kerala", "Madhya

Pradesh", "Maharashtra", _

 "Manipur", "Meghalaya", "Mizoram", "Nagaland", "Odisha", "Punjab", "Rajasthan",

"Sikkim", _

 "Tamil Nadu", "Telangana", "Tripura", "Uttar Pradesh", "Uttarakhand", "West

Bengal", "Andaman and Nicobar Islands", _

 "Chandigarh", "Delhi", "Dadra and Nagar Haveli and Daman and Diu", "Jammu and

Kashmir", "Ladakh", "Lakshadweep", "Puducherry")

Me.StatesList.Clear

Me.StatesList.List = statesArray

End Sub

The code defines a subroutine named PopulateStatesList that is used to populate a list

or dropdown control within a UserForm with a predefined array of Indian states and union

territories. Here's a breakdown of the code's functionality:

A variant array named statesArray is created. This array contains the names of Indian

states and union territories as individual elements.

The code clears the existing items from the StatesList control within the UserForm. This

ensures that the control is empty before populating it with new data.

The List property of the StatesList control is assigned the statesArray. This action

populates the control with the elements from the array, displaying the list of states and

union territories as options for users to choose from.

This subroutine is useful for providing users with a standardized list of options for selecting

their state or union territory. By dynamically loading the list from an array, you ensure that

any updates or changes to the list of states are automatically reflected in the UserForm,

reducing the need for manual adjustments. This approach enhances user-friendliness

and data accuracy when collecting information related to geographic location.

Day and Date Display : (This line already in UserForm Initialize)

lblDate.Caption = "Today is " & Format(Date, "dddd") & ", Date: " & Format(Date,

"dd/mm/yyyy")

The provided code sets the caption of a label control (lblDate) within a UserForm to

display the current day of the week and the current date in a specific format. Here's a

breakdown of the code:

lblDate.Caption: This refers to the caption property of the label control named lblDate.

"Today is ": This is a static text that is displayed at the beginning of the label's caption.

Format(Date, "dddd"): This part of the code uses the Format function to format the current

date (Date) as the full name of the day of the week (e.g., "Monday", "Tuesday", etc.). The

"dddd" format specifier represents the full day name.

& ", Date: ": This is another static text that is added after the day of the week.

Format(Date, "dd/mm/yyyy"): This part of the code formats the current date in the format

"dd/mm/yyyy", where "dd" represents the day, "mm" represents the month, and "yyyy"

represents the year.

When this code is executed, the label's caption will be updated to show a message like

"Today is Monday, Date: 12/08/2023" (assuming the current date is August 12, 2023, and

it's a Monday). This can provide users with real-time information about the current day

and date when interacting with the UserForm.

Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).Row

 Dim rng As Range

 Set rng = ws.Range("A2:M" & lastRow) ' Assuming data starts from A2

 ListBox1.Clear

 ListBox1.List = rng.Value

The code snippet performs the following actions within an Excel VBA macro:

It defines a worksheet variable named ws and assigns it the reference to the worksheet

named "Customer_Master" in the current workbook (ThisWorkbook).

It calculates the last used row in column A of the "Customer_Master" worksheet using the

.Cells(ws.Rows.Count, "A").End(xlUp).Row expression. This determines the upper

boundary of the range of data to be processed.

It defines a range variable named rng and sets it to cover a range from cell A2 to the last

used row in column M ("A2:M" & lastRow). This range is assumed to include the data,

and it will be used to populate the list box.

It clears the items currently present in ListBox1.

It populates ListBox1 with the values from the defined range (rng.Value).

In summary, this code segment retrieves data from the "Customer_Master" worksheet,

starting from cell A2 and extending to the last used row in column M. It then clears the

existing items in ListBox1 and fills it with the retrieved data, effectively displaying the data

in a list format for users to view. This kind of operation is often used to display data stored

in Excel worksheets within a user-friendly interface, such as a UserForm's list box, to

allow users to interact with and select specific data entries.

Add Button Code : (Copy this Code)

Private Sub CmdAdd_Click()

 txtFieldsEnabled

 Me.TxtCustID.SetFocus

 CmdAdd.Enabled = False

 CmdSave.Enabled = True

End Sub

The code snippet defines a subroutine named CmdAdd_Click that appears to be

associated with the "Add" button within a UserForm. This subroutine is likely executed

when the user clicks the "Add" button. Here's a breakdown of the code's functionality:

txtFieldsEnabled: This subroutine is invoked, enabling various textboxes and controls

within the UserForm. This action likely allows the user to start entering data after clicking

the "Add" button.

Me.TxtCustID.SetFocus: This line sets the focus to the "TxtCustID" textbox, presumably

after enabling the fields. This action ensures that the user's input cursor is placed in the

specified textbox, indicating that it's ready to receive user input.

CmdAdd.Enabled = False: This line disables the "Add" button after it has been clicked.

This could prevent users from clicking the button multiple times while processing the

addition of data.

This code segment is a typical part of a UserForm's interaction logic. It prepares the

UserForm for data entry by enabling input fields, setting focus to the appropriate textbox,

and managing the button's state. Additionally, the commented-out lines allow for testing

with preset data before users start entering their own information.

Call this sub to add button sub : txtFieldsEnabled (Copy below code)

Sub txtFieldsEnabled()

 TxtCustID.Enabled = True

 TxtCustName.Enabled = True

 TxtCustAdd.Enabled = True

 TxtCustCity.Enabled = True

 TxtCustPin.Enabled = True

 TxtCustPhone.Enabled = True

 TxtCustEmail.Enabled = True

 TxtCustPan.Enabled = True

 TxtCustStateCode.Enabled = True

 TxtCustGstin.Enabled = True

 TxtSRID.Enabled = True

 StatesList.Enabled = True

 CustSD.Enabled = True

 CustSC.Enabled = True

End Sub

The provided code snippet defines a subroutine named txtFieldsEnabled that seems to

be related to enabling a set of textboxes, dropdowns, and controls within a UserForm.

This subroutine is likely used to activate input fields, allowing users to interact with and

provide data. Here's a description of the code's function:

The txtFieldsEnabled subroutine serves the purpose of enabling multiple textboxes,

dropdowns, and controls within a UserForm. Each control specified in the code (e.g.,

TxtCustID, TxtCustName, TxtCustAdd, etc.) is set to an enabled state using the .Enabled

property.

By invoking this subroutine, you make the designated controls active and available for

user input. This action is particularly useful when transitioning from a state where input is

restricted (e.g., when a form is initially displayed) to a state where users are allowed to

provide data. It enhances user experience by adapting the form's interface to different

stages of interaction, enabling users to enter information seamlessly.

Customer_ID Validation Code : (Copy below code in TxtCustID Textbox)

Private Sub TxtCustID_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 ' Restrict Cust_ID to three characters: 1 alphabet + 2 numeric

 If Len(Me.TxtCustID.Value) = 0 Then

 ' Allow only uppercase alphabets as the first character

 If Not (KeyAscii >= 65 And KeyAscii <= 90) Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Please enter an uppercase alphabet as the first character.",

vbExclamation, "Invalid Input...Gautam Banerjee"

 End If

 ElseIf Len(Me.TxtCustID.Value) = 1 Or Len(Me.TxtCustID.Value) = 2 Then

 ' Allow only numeric characters for the second and third characters

 If Not (KeyAscii >= 48 And KeyAscii <= 57) Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Please enter numeric digits for the second and third characters.",

vbExclamation, "Invalid Input...Gautam Banerjee"

 End If

 ElseIf Len(Me.TxtCustID.Value) >= 3 Then

 ' Prevent entering more than 3 characters

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Cust_ID should be exactly 3 characters.", vbExclamation, "Invalid

Input...Gautam Banerjee"

 End If

End Sub

The code snippet defines an event handler named TxtCustID_KeyPress, which is

associated with the KeyPress event of a textbox control named TxtCustID within a

UserForm. This event handler is used to validate and control user input as they type

characters into the TxtCustID textbox. Here's a breakdown of the code's functionality:

KeyAscii As MSForms.ReturnInteger: The parameter KeyAscii represents the ASCII

value of the key being pressed by the user. It's used to control the behavior of the

keypress.

The code first checks if the length of the TxtCustID value is zero, indicating that no

characters have been entered yet. If this is the case:

It ensures that only uppercase alphabetic characters (A-Z) are allowed as the first

character of the TxtCustID. If the pressed key doesn't match this criteria, the KeyAscii

value is set to 0 to cancel the keypress, and a message is displayed.

If the length of TxtCustID value is 1 or 2 (i.e., the first character has been entered):

It restricts input to numeric characters (0-9) for the second and third characters. If the

pressed key is not a numeric digit, the KeyAscii value is set to 0, and a message is

displayed.

If the length of TxtCustID value is 3 or more:

It prevents further characters from being entered, effectively limiting the Cust_ID to

exactly 3 characters. If the pressed key is any character, the KeyAscii value is set to 0,

and a message is displayed.

In summary, this event handler enforces specific validation rules on the TxtCustID textbox

as the user types. It ensures that only uppercase alphabetic characters and numeric digits

are entered in the correct sequence, while also limiting the total length to 3 characters.

This type of validation enhances data integrity by preventing incorrect or incomplete

entries as users input data.

Learn VBA Coding for Excel | How to Start Excel with VBA | Part 01 :

https://youtu.be/dW2Zt--Xddo

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

https://youtu.be/dW2Zt--Xddo

Customer_Name Validation Code : (Copy below code in TxtCustName Textbox)

Private Sub TxtCustName_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Dim CName As String

 CName = Trim(Me.TxtCustName.Text)

 Instruction.Caption = "Name should be minimum 3 Characters"

 If Len(CName) < 3 Then

 MsgBox "Customer name Can not Blank", vbExclamation, "Invalid input"

 Cancel = True

 Me.TxtCustName.SetFocus

 End If

 Label29.Caption = Me.TxtCustID.Text

End Sub

The code snippet defines an event handler named TxtCustName_Exit, which is

associated with the Exit event of a textbox control named TxtCustName within a

UserForm. This event handler is used to validate the customer's name input when the

focus leaves the TxtCustName textbox. Here's a breakdown of the code's functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustName control.

Dim CName As String: Declares a variable named CName to store the trimmed content

of the TxtCustName textbox.

CName = Trim(Me.TxtCustName.Text): Trims any leading or trailing spaces from the text

in the TxtCustName textbox and assigns the result to the CName variable.

Instruction.Caption = "Name should be minimum 3 Characters": Sets the caption of an

unspecified control (likely a label) named Instruction to provide an instruction to the user.

If the length of the trimmed CName is less than 3 characters:

A message box is displayed to inform the user that the customer name cannot be blank.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustName

control.

The focus is set back to the TxtCustName control, ensuring that the user must correct the

input.

In summary, this event handler ensures that the customer's name input is valid before

allowing the focus to move away from the TxtCustName control. It displays messages to

guide the user and prevent them from entering insufficient or invalid data.

Copy below Code:

Private Sub TxtCustName_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Instruction.Caption = "Name should be minimum 3 Characters"

 Instruction.BackColor = vbBlue

End Sub

The code snippet defines an event handler named TxtCustName_KeyPress, which is

associated with the KeyPress event of a textbox control named TxtCustName within a

UserForm. This event handler is used to provide a visual cue to the user when they press

a key while entering data into the TxtCustName textbox. Here's a breakdown of the code's

functionality:

KeyAscii As MSForms.ReturnInteger: The parameter KeyAscii represents the ASCII

value of the key being pressed by the user. It's used to control the behavior of the

keypress.

Instruction.Caption = "Name should be minimum 3 Characters": Sets the caption of an

unspecified control (likely a label) named Instruction to provide an instruction to the user.

Instruction.BackColor = vbBlue: Sets the background color of the same Instruction control

to blue. This action changes the visual appearance of the control to draw the user's

attention.

In summary, this event handler updates the Instruction control's caption to remind the

user about the requirement for a minimum of 3 characters in the customer name.

Additionally, it changes the background color of the control to blue, creating a visual

indicator that helps draw the user's attention to the specific instruction. This kind of

feedback can be helpful in guiding users as they input data into the form.

Customer_Address Validation Code : (Copy below code in TxtCustAdd Textbox)

Private Sub TxtCustAdd_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Dim address As String

 address = Trim(Me.TxtCustAdd.Text)

 If Len(address) < 5 Then

 MsgBox "Customer Address should be at least 5 characters long.",

vbExclamation, "Invalid input... Gautam Banerjee"

 Cancel = True

 Me.TxtCustAdd.SetFocus

 End If

 Label30.Caption = Me.TxtCustName.Text

End Sub

The provided code snippet defines an event handler named TxtCustAdd_Exit, which is

associated with the Exit event of a textbox control named TxtCustAdd within a UserForm.

This event handler is used to validate the customer's address input when the focus leaves

the TxtCustAdd textbox. Here's a breakdown of the code's functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustAdd control.

Dim address As String: Declares a variable named address to store the trimmed content

of the TxtCustAdd textbox.

address = Trim(Me.TxtCustAdd.Text): Trims any leading or trailing spaces from the text

in the TxtCustAdd textbox and assigns the result to the address variable.

If the length of the trimmed address is less than 5 characters:

A message box is displayed to inform the user that the customer address should be at

least 5 characters long.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustAdd

control.

The focus is set back to the TxtCustAdd control, ensuring that the user must correct the

input.

In summary, this event handler ensures that the customer's address input is valid before

allowing the focus to move away from the TxtCustAdd control. It displays messages to

guide the user and prevent them from entering insufficient or invalid data.

Customer_City Validation Code : (Copy below code in TxtCustCity Textbox)

Private Sub TxtCustcity_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Dim City As String

 City = Trim(Me.TxtCustCity.Text)

 If Len(City) < 3 Then

 MsgBox "Customer City should be at least 3 characters long.", vbExclamation,

"Invalid input... Gautam Banerjee"

 Cancel = True

 Me.TxtCustCity.SetFocus

 End If

 Label31.Caption = Me.TxtCustAdd.Text

End Sub

Private Sub TxtCustCity_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Instruction.BackColor = vbYellow

 Instruction.ForeColor = vbBlue

 Instruction.Caption = "City should be minimum 3 Characters"

End Sub

The provided code snippet defines an event handler named TxtCustcity_Exit, which is

associated with the Exit event of a textbox control named TxtCustCity within a UserForm.

This event handler is used to validate the customer's city input when the focus leaves the

TxtCustCity textbox. Here's a breakdown of the code's functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustCity control.

Dim City As String: Declares a variable named City to store the trimmed content of the

TxtCustCity textbox.

City = Trim(Me.TxtCustCity.Text): Trims any leading or trailing spaces from the text in the

TxtCustCity textbox and assigns the result to the City variable.

If the length of the trimmed City is less than 3 characters:

A message box is displayed to inform the user that the customer city should be at least 3

characters long.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustCity

control.

The focus is set back to the TxtCustCity control, ensuring that the user must correct the

input.

In summary, this event handler ensures that the customer's city input is valid before

allowing the focus to move away from the TxtCustCity control. It displays messages to

guide the user and prevent them from entering insufficient or invalid data.

Customer_PIN Validation Code : (Copy below code in TxtCustPIN Textbox)

Private Sub TxtCustPin_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Dim Pin As String

 Pin = Me.TxtCustPin.Text

 If Len(Pin) <> 6 Or Not IsNumeric(Pin) Then

 MsgBox "Customer PIN Code should be exactly 6 digits and all numeric",

vbExclamation, "Invalid input... Gautam Banerjee"

 Cancel = True

 Me.TxtCustPin.SetFocus

 End If

 Label32.Caption = Me.TxtCustCity.Text

End Sub

Private Sub TxtCustPin_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Instruction.BackColor = vbBlue

 Instruction.ForeColor = vbWhite

 Instruction.Caption = "PIN code should be minimum 6 Characters long and all must be

Digit"

End Sub

The code snippet defines an event handler named TxtCustPin_Exit, which is associated

with the Exit event of a textbox control named TxtCustPin within a UserForm. This event

handler is used to validate the customer's PIN code input when the focus leaves the

TxtCustPin textbox. Here's a breakdown of the code's functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustPin control.

Dim Pin As String: Declares a variable named Pin to store the content of the TxtCustPin

textbox.

Pin = Me.TxtCustPin.Text: Assigns the content of the TxtCustPin textbox to the Pin

variable.

If the length of the Pin is not equal to 6 digits or if the content of Pin is not entirely numeric:

A message box is displayed to inform the user that the customer PIN code should be

exactly 6 digits and consist of numeric characters only.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustPin

control.

The focus is set back to the TxtCustPin control, ensuring that the user must correct the

input.

In summary, this event handler ensures that the customer's PIN code input is valid before

allowing the focus to move away from the TxtCustPin control. It displays messages to

guide the user and prevent them from entering insufficient or invalid data.

The code snippet defines an event handler named TxtCustPin_KeyPress, which is

associated with the KeyPress event of a textbox control named TxtCustPin within a

UserForm. This event handler is used to provide a visual cue to the user when they press

a key while entering data into the TxtCustPin textbox. Here's a breakdown of the code's

functionality:

KeyAscii As MSForms.ReturnInteger: The parameter KeyAscii represents the ASCII

value of the key being pressed by the user. It's used to control the behavior of the

keypress.

Instruction.BackColor = vbBlue: Sets the background color of an unspecified control

(likely a label) named Instruction to blue. This action changes the visual appearance of

the control to draw the user's attention.

Instruction.ForeColor = vbWhite: Sets the text color of the same Instruction control to

white. This further enhances the visibility of the text against the blue background.

Instruction.Caption = "PIN code should be minimum 6 Characters long and all must be

Digit": Sets the caption of the Instruction control to provide an instruction to the user

regarding the requirements for the PIN code. This text appears with the modified visual

appearance (blue background and white text) to ensure that it stands out.

In summary, this event handler updates the Instruction control's appearance and caption

to remind the user about the validation rules for the PIN code. The blue background and

white text combination is used to draw the user's attention to the instruction while they

input data into the TxtCustPin textbox.

State List Validation Code : (Copy below code in StatesList Listbox)

Private Sub StatesList_Click()

 Dim SelectedStates As String

 SelectedStates = StatesList.Value

 Dim StateCode As String

 StateCode = GetStateGSTIN(SelectedStates)

 TxtCustStateCode.Value = StateCode

 Instruction.BackColor = vbRed

 Instruction.Caption = "Phone should be 10 characters long and must be numeric"

 Label33.Caption = Me.TxtCustPin.Text

End Sub

The code snippet defines an event handler named StatesList_Click, which is associated

with the Click event of a combo box control named StatesList within a UserForm. This

event handler is used to perform several actions when the user selects a state from the

dropdown list. Here's a breakdown of the code's functionality:

Dim SelectedStates As String: Declares a variable named SelectedStates to store the

selected state from the StatesList combo box.

SelectedStates = StatesList.Value: Assigns the selected value from the StatesList combo

box to the SelectedStates variable.

Dim StateCode As String: Declares a variable named StateCode to store the GSTIN

(Goods and Services Tax Identification Number) state code for the selected state.

StateCode = GetStateGSTIN(SelectedStates): Calls a function named GetStateGSTIN

and passes the SelectedStates value to it. This function is likely used to retrieve the state

code associated with the selected state.

TxtCustStateCode.Value = StateCode: Sets the value of a textbox control named

TxtCustStateCode to the value of the StateCode variable. This may be used to display

the GSTIN state code.

Instruction.BackColor = vbRed: Sets the background color of an unspecified control (likely

a label) named Instruction to red. This action changes the visual appearance of the control

to draw the user's attention.

Instruction.Caption = "Phone should be 10 characters long and must be numeric": Sets

the caption of the Instruction control to provide an instruction to the user regarding the

validation rules for the phone number. This text appears with the modified visual

appearance (red background).

In summary, this event handler updates the UI and provides instructions to the user when

they select a state from the StatesList combo box. It displays the GSTIN state code and

an instruction about the validation rules for the phone number while drawing attention to

the instruction using a red background.

Customer Phone No. Validation Code : (Copy below code in TxtCustPhone Textbox)

Private Sub TxtCustPhone_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Dim Fone As String

 Fone = Me.TxtCustPhone.Text

 If Len(Fone) <> 10 Or Not IsNumeric(Fone) Then

 MsgBox "Please enter valid Mobile no. (10 Digit)", vbExclamation, "Invalid

input...Gautam Banerjee"

 Cancel = True

 Me.TxtCustPhone.SetFocus

 End If

 Label34.Caption = Me.StatesList.Text

End Sub

The provided code snippet defines an event handler named TxtCustPhone_Exit, which is

associated with the Exit event of a textbox control named TxtCustPhone within a

UserForm. This event handler is used to validate the customer's mobile phone number

input when the focus leaves the TxtCustPhone textbox. Here's a breakdown of the code's

functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustPhone control.

Dim Fone As String: Declares a variable named Fone to store the content of the

TxtCustPhone textbox.

Fone = Me.TxtCustPhone.Text: Assigns the content of the TxtCustPhone textbox to the

Fone variable.

If the length of the Fone is not equal to 10 digits or if the content of Fone is not entirely

numeric:

A message box is displayed to inform the user that they need to enter a valid 10-digit

mobile phone number.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustPhone

control.

The focus is set back to the TxtCustPhone control, ensuring that the user must correct

the input.

In summary, this event handler ensures that the customer's mobile phone number input

is valid before allowing the focus to move away from the TxtCustPhone control. It displays

messages to guide the user and prevent them from entering insufficient or invalid data.

Customer Email Validation Code : (Copy below code in TxtCustEmail Textbox)

Private Sub TxtCustEmail_Exit(ByVal Cancel As MSForms.ReturnBoolean)

Dim Email As String

Email = Me.TxtCustEmail.Text

If Not IsValidEmail(Email) Then

 MsgBox "Please enter a valid email address", vbExclamation, "Invalid input...Gautam

Banerjee"

 Cancel = True

 Me.TxtCustEmail.SetFocus

End If

Label35.Caption = Me.TxtCustPhone.Text

End Sub

Private Function IsValidEmail(ByVal Email As String) As Boolean

 Dim regex As Object

 Set regex = CreateObject("VbScript.RegExp")

 regex.Pattern = "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"

 IsValidEmail = regex.test(Email)

End Function

Private Sub TxtCustEmail_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Instruction.BackColor = vbBlue

 Instruction.Caption = "Email should be right E-mail Format (i.e.gincom1@yahoo.com)"

End Sub

The code snippet defines an event handler named TxtCustEmail_Exit, which is

associated with the Exit event of a textbox control named TxtCustEmail within a

UserForm. This event handler is used to validate the customer's email address input when

the focus leaves the TxtCustEmail textbox. It appears to use a separate function named

IsValidEmail to perform the email validation. Here's a breakdown of the code's

functionality:

Cancel As MSForms.ReturnBoolean: The parameter Cancel is used to control whether

the focus remains on the control after the event handler has executed. If set to True, the

focus will stay on the TxtCustEmail control.

Dim Email As String: Declares a variable named Email to store the content of the

TxtCustEmail textbox.

Email = Me.TxtCustEmail.Text: Assigns the content of the TxtCustEmail textbox to the

Email variable.

If Not IsValidEmail(Email) Then: Calls a function named IsValidEmail and passes the

Email value to it. The function is likely used to validate the format of the email address.

If the email address is not valid:

A message box is displayed to inform the user that they need to enter a valid email

address.

The Cancel parameter is set to True, preventing the focus from leaving the TxtCustEmail

control.

The focus is set back to the TxtCustEmail control, ensuring that the user must correct the

input.

In summary, this event handler ensures that the customer's email address input is valid

before allowing the focus to move away from the TxtCustEmail control. It uses a separate

function to validate the email format and displays messages to guide the user and prevent

them from entering invalid email addresses.

The code snippet defines a function named IsValidEmail that is used to validate an email

address based on a regular expression pattern. Here's a breakdown of the code's

functionality:

Private Function IsValidEmail(ByVal Email As String) As Boolean: This is the function

definition. It takes an Email parameter as input and returns a Boolean value (True if the

email is valid, False if not).

Dim regex As Object: Declares a variable named regex to hold an instance of the

VbScript.RegExp object. This object is used for regular expression pattern matching.

Set regex = CreateObject("VbScript.RegExp"): Creates an instance of the

VbScript.RegExp object and assigns it to the regex variable.

regex.Pattern = "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$": Sets the regular

expression pattern for validating an email address. The pattern checks for the format of

a typical email address. It includes the following components:

[a-zA-Z0-9._%+-]+: Matches the username part of the email address (before the '@'

symbol), allowing for letters, digits, dots, underscores, percent signs, plus signs, and

hyphens.

@: Matches the literal '@' symbol.

[a-zA-Z0-9.-]+: Matches the domain name part of the email address (between the '@'

symbol and the last dot), allowing for letters, digits, dots, and hyphens.

\.: Matches the literal dot '.'.

[a-zA-Z]{2,}: Matches the top-level domain (TLD) part of the email address, requiring at

least two letters (e.g., com, org, gov).

IsValidEmail = regex.test(Email): Calls the test method of the regex object to check if the

provided Email matches the regular expression pattern. The result of the test (either True

or False) is assigned to the IsValidEmail function.

In summary, the IsValidEmail function uses a regular expression pattern to validate

whether an input string conforms to the format of a valid email address. It returns True if

the email is valid and False if it's not. This function can be used to enhance the validation

of email addresses in your VBA UserForm.

The code snippet defines an event handler named TxtCustEmail_KeyPress, which is

associated with the KeyPress event of a textbox control named TxtCustEmail within a

UserForm. This event handler is used to provide instructions to the user about the

expected format of the email address when they are typing in the textbox. Here's a

breakdown of the code's functionality:

KeyAscii As MSForms.ReturnInteger: The parameter KeyAscii represents the ASCII code

of the key being pressed. However, this event handler does not use the KeyAscii

parameter for any processing.

Instruction.BackColor = vbBlue: Sets the background color of a control named Instruction

to blue. This control seems to be used to display instructional messages.

Instruction.Caption = "Email should be right E-mail Format (i.e. gincom1@yahoo.com)":

Sets the caption or text of the Instruction control to provide guidance to the user. The

message informs the user about the expected format of an email address (i.e.,

"gincom1@yahoo.com").

In summary, this event handler is triggered when the user presses a key in the

TxtCustEmail textbox. It changes the background color of an instructional control and

mailto:gincom1@yahoo.com

displays a message indicating the expected format for the email address input. This helps

guide the user as they type their email address.

Customer PAN No. Validation Code : (Copy below code in TxtCustPan Textbox)

Private Sub TxtCustPan_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Dim validChars As String

 Dim pan As String

 Instruction.BackColor = vbRed

 Instruction.Caption = "PAN Card No. should be right format, All letters must type in

Uppercase (i.e ABCDE9999M)"

 ' Handle the Enter key separately

 If KeyAscii = 13 Then

 KeyAscii = 0 ' Cancel the keypress

 Exit Sub

 End If

 validChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"

 pan = UCase(Trim(Me.TxtCustPan.Text)) ' Convert input to uppercase

 ' Check if the entered character is a valid character (A-Z, 0-9)

 If InStr(validChars, Chr(KeyAscii)) = 0 Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "PAN No. should only contain uppercase letters (A-Z) and digits (0-9).",

vbExclamation, "Invalid Input"

 End If

 ' Validate the PAN No. format after 5 letters and 4 digits

 If Len(pan) < 5 And KeyAscii >= 48 And KeyAscii <= 57 Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Invalid PAN format. The first 5 characters should be uppercase letters (A-

Z).", vbExclamation, "Invalid Input"

 ElseIf Len(pan) = 5 And Not (KeyAscii >= 48 And KeyAscii <= 57) Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Invalid PAN format. The next 4 characters should be digits (0-9).",

vbExclamation, "Invalid Input"

 ElseIf Len(pan) = 9 And (KeyAscii >= 48 And KeyAscii <= 57) Then

 KeyAscii = 0 ' Cancel the keypress

 MsgBox "Invalid PAN format. The last character should be an uppercase letter (A-

Z).", vbExclamation, "Invalid Input"

 End If

 Label36.Caption = Me.TxtCustEmail.Text

End Sub

The provided code snippet defines an event handler named TxtCustPan_KeyPress,

which is associated with the KeyPress event of a textbox control named TxtCustPan

within a UserForm. This event handler is used to validate the format of a PAN (Permanent

Account Number) card by restricting the input based on specific rules. Here's a

breakdown of the code's functionality:

KeyAscii As MSForms.ReturnInteger: The parameter KeyAscii represents the ASCII code

of the key being pressed.

Dim validChars As String: Declares a string variable named validChars to store the valid

characters allowed for a PAN card.

Dim pan As String: Declares a string variable named pan to store the current content of

the TxtCustPan textbox, converted to uppercase.

Instruction.BackColor = vbRed: Sets the background color of an instructional control to

red.

Instruction.Caption = "PAN Card No. should be right format, All letters must type in

Uppercase (i.e ABCDE9999M)": Sets the caption of the instructional control to provide

guidance on the expected format of a PAN card number.

The section that follows handles the behavior when certain keys are pressed, such as the

Enter key. If the Enter key is pressed (KeyAscii = 13), the keypress is canceled, and the

event handler exits.

validChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890": Initializes the

validChars string with all uppercase letters and digits.

pan = UCase(Trim(Me.TxtCustPan.Text)): Converts the content of the TxtCustPan

textbox to uppercase and trims any leading or trailing spaces.

The subsequent code block validates the entered character against the validChars string.

If the entered character is not valid, the keypress is canceled, and a message box is

displayed to inform the user.

The code then checks for specific formats for the PAN card number, such as requiring

the first 5 characters to be letters (A-Z), the next 4 characters to be digits (0-9), and the

last character to be a letter. If the entered character violates any of these format rules,

the keypress is canceled, and an appropriate error message is shown.

In summary, the event handler TxtCustPan_KeyPress is used to validate the input in the

TxtCustPan textbox for PAN card numbers. It enforces the specified format rules and

provides user feedback through error messages and instructional captions.

Auto populate State GST Code : Validation Code : (Copy below code in

TxtCustStateCode Textbox)

Private Sub TxtCustStateCode_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 If Not bexitflag Then

 ' Get the values of TxtCustPAN and TxtCustStateCode

 Dim PanNo As String

 Dim StateCode As String

 PanNo = Trim(Me.TxtCustPan.Text)

 StateCode = Trim(Me.TxtCustStateCode.Text)

 ' Combine the values of TxtCustPAN and TxtCustStateCode to form GSTIN

 Dim gstin As String

 gstin = StateCode & PanNo

 ' Update the TxtCustGstin field

 Me.TxtCustGstin.Text = ""

 Me.TxtCustGstin.Text = gstin

 ' Move the cursor to the end of the TxtCustGstin field

 Me.TxtCustGstin.SetFocus

 Me.TxtCustGstin.SelStart = Len(gstin)

 End If

 ' Reset the flag

 bexitflag = False

 Label38.Caption = Me.TxtCustPan.Text

 Label39.Caption = Me.TxtCustGstin.Text

End Sub

Private Sub TxtCustStateCode_KeyDown(ByVal KeyCode As MSForms.ReturnInteger,

ByVal Shift As Integer)

 If KeyCode = vbKeyReturn Then

 bexitflag = True

 Me.TxtCustStateCode.SelStart = Len(Me.TxtCustStateCode.Text)

 Me.TxtCustStateCode.SelLength = 0

 End If

 Instruction.BackColor = vbRed

 Instruction.Caption = "Please fill last 3 Characters in Customer GSTIN field (i.e 1Z2)"

End Sub

The provided code snippet is an event handler named TxtCustStateCode_Exit,

associated with the Exit event of a textbox control named TxtCustStateCode within a

UserForm. This event handler is used to automatically generate a GSTIN (Goods and

Services Tax Identification Number) by combining the values of PAN card and state code,

and then updating the TxtCustGstin textbox accordingly. Here's an explanation of the

code's functionality:

If Not bexitflag Then: This conditional check ensures that the code inside the

TxtCustStateCode_Exit event handler is only executed if the bexitflag variable is not True.

This flag is used to prevent the code from executing during certain scenarios, as

controlled by external logic.

Dim PanNo As String and Dim StateCode As String: These lines declare string variables

PanNo and StateCode to store the values of TxtCustPan (PAN card number) and

TxtCustStateCode (state code) textboxes, respectively.

gstin = StateCode & PanNo: This line combines the values of StateCode and PanNo to

form the GSTIN.

Me.TxtCustGstin.Text = "" and Me.TxtCustGstin.Text = gstin: These lines clear the

current content of the TxtCustGstin textbox and then set its content to the calculated

GSTIN.

Me.TxtCustGstin.SetFocus: Moves the cursor focus to the TxtCustGstin textbox.

Me.TxtCustGstin.SelStart = Len(gstin): Sets the starting position of the cursor within the

TxtCustGstin textbox to the length of the calculated GSTIN. This effectively places the

cursor at the end of the textbox content.

The flag bexitflag is then reset to False to ensure that the event handler will work as

expected in subsequent interactions.

In summary, the TxtCustStateCode_Exit event handler automatically generates a GSTIN

by combining the PAN card number and state code, updates the TxtCustGstin textbox

with the generated GSTIN, and positions the cursor at the end of the textbox content. The

use of the bexitflag variable ensures that the automatic GSTIN generation only occurs

under specific conditions.

The provided code snippet is an event handler named TxtCustStateCode_KeyDown,

associated with the KeyDown event of a textbox control named TxtCustStateCode within

a UserForm. This event handler captures the Return key (Enter key) press and performs

specific actions. Here's an explanation of the code's functionality:

If KeyCode = vbKeyReturn Then: This line checks if the pressed key code corresponds

to the Return key (Enter key).

bexitflag = True: Sets the bexitflag variable to True. This flag, when set to True, is used

in the TxtCustStateCode_Exit event handler to control whether certain actions are

performed or not.

Me.TxtCustStateCode.SelStart = Len(Me.TxtCustStateCode.Text): Positions the cursor

at the end of the TxtCustStateCode textbox's content.

Me.TxtCustStateCode.SelLength = 0: Sets the selection length to zero. This effectively

deselects any text in the textbox.

Instruction.BackColor = vbRed and Instruction.Caption = "Please fill last 3 Characters in

Customer GSTIN field (i.e 1Z2)": These lines set the background color of the Instruction

label to red and update its caption to provide a user instruction.

In summary, the TxtCustStateCode_KeyDown event handler captures the Return key

press, sets the bexitflag to True (to control the behavior of the TxtCustStateCode_Exit

event handler), positions the cursor at the end of the TxtCustStateCode textbox's content,

and updates the instruction label to guide the user to fill in the last 3 characters for the

GSTIN field.

Write top of the Code window:

Option Explicit

Dim bexitflag As Boolean

The code snippet includes the declaration of a variable bexitflag and the usage of the

Option Explicit statement. Here's an explanation of each part:

Option Explicit: This statement enforces the declaration of all variables before they are

used in the code. It helps catch typos and promotes better coding practices by ensuring

that all variables are properly defined.

Dim bexitflag As Boolean: This line declares a Boolean variable named bexitflag. Boolean

variables can hold either True or False values. This variable is likely intended to be used

as a flag to control certain behaviors in different parts of the code.

By using Option Explicit, you ensure that variables are explicitly declared, and the

declaration of bexitflag prepares the variable for later use within the code. This approach

helps prevent accidental usage of undefined variables and improves the overall reliability

and readability of the code.

Auto populate Customer GSTIN : Validation Code : (Copy below code in TxtCustGSTIN

Textbox)

Private Sub TxtCustGstin_Exit(ByVal Cancel As MSForms.ReturnBoolean)

 Instruction.Caption = "Please Fill First two characters must 'SR' and rest of the two

must be Digit"

 Label39.Caption = Me.TxtCustGstin.Text

End Sub

Private Sub TxtCustGstin_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 Instruction.Caption = "Type only last 3 Characters"

End Sub

The provided code snippet contains event handlers for the TxtCustGstin control in a VBA

UserForm. Here's an explanation of each part:

Private Sub TxtCustGstin_Exit(ByVal Cancel As MSForms.ReturnBoolean): This event

handler is triggered when the user exits the TxtCustGstin control (usually by clicking

outside the control). It sets the caption of the Instruction label to guide the user about the

expected format of the GSTIN. Additionally, it updates the caption of the Label39 label

with the content of the TxtCustGstin control.

Private Sub TxtCustGstin_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger): This

event handler is triggered when a key is pressed while the focus is on the TxtCustGstin

control. It provides guidance to the user by updating the caption of the Instruction label,

suggesting that only the last 3 characters should be entered.

These event handlers help provide user guidance and validation as the user interacts with

the TxtCustGstin control. They ensure that users are aware of the expected format and

help prevent incorrect inputs.

Sales Rep. ID : Validation Code : (Copy below code in TxtSRID Textbox)

Private Sub TxtSRID_Exit(ByVal Cancel As MSForms.ReturnBoolean)

Dim Srid As String

Srid = UCase(Trim(TxtSRID.Text))

If Len(Srid) <> 4 Or Left(Srid, 2) <> "SR" Or Not IsNumeric(Mid(Srid, 3, 2)) Then

 MsgBox "Invalid SRID format. It should start with 'SR' followed by two numeric

characters", vbExclamation, "Invalid input"

 Cancel = True

 Me.TxtSRID.SetFocus

End If

Label37.Caption = Srid

End Sub

The provided code snippet contains an event handler for the TxtSRID control in a VBA

UserForm. When the user exits the TxtSRID control (usually by clicking outside the

control), the code checks the entered value.

It first converts the entered value to uppercase and removes any leading or trailing spaces

using the UCase and Trim functions.

The code then performs several checks:

It checks if the length of the value is exactly 4 characters.

It checks if the first two characters of the value are "SR".

It checks if the characters at positions 3 and 4 (after "SR") are numeric.

If any of the checks fail, a message box is displayed to inform the user about the invalid

format. The Cancel parameter is set to True, which prevents the focus from leaving the

TxtSRID control. This ensures that the user is prompted to correct the input.

Finally, the code sets the focus back to the TxtSRID control.

This event handler helps ensure that the entered SRID follows the required format and

contains valid characters.

Cancel Button : (Copy below code)

Private Sub CmdCancel_Click()

 TxtBoxBlank

 txtFieldsDisabled

 CmdSave.Enabled = False

 CmdAdd.Enabled = True

End Sub

The code snippet contains an event handler for the CmdCancel button in a VBA

UserForm. When the user clicks the CmdCancel button, the code is triggered.

The TxtBoxBlank procedure is called, which clears the content of all text boxes and labels

on the form.

The txtFieldsDisabled procedure is called, which disables the text boxes and controls that

are used to input data.

The CmdSave button is disabled, preventing the user from attempting to save data after

clicking the cancel button.

The CmdAdd button is enabled, allowing the user to enter new data after canceling the

current operation.

This event handler helps reset the form to a clean state and provides an option to cancel

any ongoing data entry or editing operation.

Close Button : (Copy below code)

You should change the name of Command Button (i.e. ClsForm)

Private Sub CommandButton1_Click()

 Unload Me

End Sub

The code snippet contains an event handler for a CommandButton1 (presumably a Close

or Exit button) in a VBA UserForm. When the user clicks the CommandButton1, the code

is triggered.

The Unload Me statement is used to close the current UserForm.

This event handler allows the user to close the UserForm by clicking the button, which

can be useful for providing an exit option when the form is no longer needed.

Display Text based Review message box (Copy below code)

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

Private Sub CmdMsgboxText_Click()

 Dim reviewText As String

 reviewText = "Review the entered data:" & vbNewLine & _

 "Customer ID: " & TxtCustID.Text & vbNewLine & _

 "Customer Name: " & TxtCustName.Text & vbNewLine & _

 "Customer Address: " & TxtCustAdd.Text & vbNewLine & _

 "Customer City: " & TxtCustCity.Text & vbNewLine & _

 "Customer State: " & StatesList.Value & vbNewLine & _

 "Customer PIN: " & TxtCustPin.Text & vbNewLine & _

 "Customer Phone: " & TxtCustPhone.Text & vbNewLine & _

 "Customer Email: " & TxtCustEmail.Text & vbNewLine & _

 "Customer PAN: " & TxtCustPan.Text & vbNewLine & _

 "Customer State Code: " & TxtCustStateCode.Text & vbNewLine & _

 "Customer GSTIN: " & TxtCustGstin.Text & vbNewLine & _

 "SRID: " & TxtSRID.Text

 ' Display the review text in a message box for the user to confirm

 MsgBox reviewText, vbInformation, "Review Data"

End Sub

The provided code snippet defines an event handler for a button (presumably named

CmdMsgboxText) in a VBA UserForm.

The purpose of this button is to display a message box that shows a summary of the

entered customer data for review before taking any further action. The review text is

constructed using concatenation (&) and the values from various textboxes and controls

in the UserForm.

The constructed review text is displayed in a message box using the MsgBox function

with the vbInformation icon and a title of "Review Data."

This allows the user to see a summarized review of the entered customer data before

proceeding with any actions, ensuring that the data is accurate before further processing

(Like Save etc).

Display UserForm based Review message box (Copy below code)

Private Sub CmdDataReview_Click()

 MsgBoxForm

End Sub

CliCk 1 Save 2

Below code for saving data to an Excel sheet

Sub SaveDatatoExcel()

 Dim ws As Worksheet

 Dim lastRow As Long

 Set ws = ThisWorkbook.Sheets("Customer_Master")

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).Row + 1

 Dim newCustID As String

 newCustID = TxtCustID.Value

 ' Check if the new Cust_ID already exists

 If CustIDExists(newCustID) Then

 MsgBox "Cust_ID already exists. Please enter a unique Cust_ID.",

vbExclamation, "Duplicate Cust_ID"

 Me.TxtCustID.SetFocus

 Exit Sub

 End If

 If Trim(TxtCustID.Text) = "" Or Trim(Me.TxtCustName.Text) = "" Or _

 Trim(Me.TxtCustCity.Text) = "" Or Trim(Me.TxtCustPin.Text) = "" Or _

 Trim(Me.StatesList.Text) = "" Or Trim(Me.TxtCustEmail.Text) = "" Or _

 Trim(Me.TxtCustPhone.Text) = "" Or Trim(Me.TxtCustPan.Text) = "" Or _

 Trim(Me.TxtCustStateCode.Text) = "" Or Trim(Me.TxtCustGstin.Text) = "" Or _

 Trim(Me.TxtSRID.Text) = "" Then

 MsgBox "Please fill in all the required fields... Gautam Banerjee",

vbExclamation, "Incomplete Entry... Gautam Banerjee"

 Exit Sub

 End If

 Dim response As VbMsgBoxResult

 response = MsgBox("Are you sure all the entries are correct? Do you want to

save the record?", vbYesNo + vbQuestion, "Confirm Save")

 If response = vbYes Then

 ws.Cells(lastRow, "A").Value = TxtCustID.Value

 ws.Cells(lastRow, "B").Value = TxtCustName.Value

 ws.Cells(lastRow, "C").Value = TxtCustAdd.Value

 ws.Cells(lastRow, "D").Value = TxtCustCity.Value

 ws.Cells(lastRow, "E").Value = TxtCustPin.Value

 ws.Cells(lastRow, "F").Value = StatesList.Value

 ws.Cells(lastRow, "G").Value = TxtCustPhone.Value

 ws.Cells(lastRow, "H").Value = TxtCustEmail.Value

 ws.Cells(lastRow, "I").Value = TxtCustPan.Value

 ws.Cells(lastRow, "J").Value = TxtCustStateCode.Value

 ws.Cells(lastRow, "K").Value = TxtCustGstin.Value

 If CustSD.Value = True Then

 ws.Cells(lastRow, "L").Value = "SD"

 Else

 ws.Cells(lastRow, "L").Value = "SC"

 End If

 ws.Cells(lastRow, "M").Value = TxtSRID.Value

 ws.Cells(lastRow, "N").Value = ""

 MsgBox "Record saved successfully", vbExclamation, "Success...Gautam

Banerjee"

 Else

 MsgBox "Please make the necessary changes and try again", vbInformation,

"Changes Required...Gautam Banerjee"

 End If

 RefreshListBox

End Sub

This code defines the behavior of the "Save Data to Excel & Access" button in the

UserForm. It performs the following steps to save customer data:

Checks if the entered Cust_ID already exists. If it does, displays a message and exits.

Validates that all required fields are filled.

Asks for confirmation before saving.

If confirmed, saves the data in the worksheet.

Displays success or prompt for necessary changes.

Refreshes the ListBox that displays customer data.

Saves the data in Access database.

Disables the "Save" button, enables the "Add" button, and clears input fields.

This ensures that the entered data is valid, and if confirmed by the user, it's saved both

in the worksheet and the Access database.

(Note: The provided code snippet is already a description of the functionality. If you need

a more concise description, please let me know.)

Below code for saving data to Ms-Access

Sub SaveDatatoAccess()

Dim conn As Object

Set conn = CreateObject("ADODB.connection")

conn.ConnectionString = "Provider=Microsoft.ACE.OLEDB.12.0;Data

Source=D:\AccessData\Customer_Master.accdb"

conn.Open

This code establishes a connection to an Access database named

"Customer_Master.accdb" located at "D:\AccessData". It uses the

"Microsoft.ACE.OLEDB.12.0" provider to establish the connection. This connection will

be used to interact with the database, allowing you to save data from the Excel UserForm

to the Access database.

 Dim sql As String

 sql = "INSERT INTO Customer_Master (Cust_ID, Cust_Name, Cust_Address,

Cust_City, Cust_PIN, Cust_State, " & _

 "Cust_Phone, Cust_Email, Cust_Pan, Cust_GSTIN, Cust_Type, SR_ID) " & _

 "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)" ' Parameterized query

This code defines an SQL statement for inserting data into the "Customer_Master" table

in the Access database. It's using a parameterized query to ensure safer and more

efficient data insertion. The placeholders denoted by "?" will be replaced with actual

values when the query is executed. The columns being inserted into are: Cust_ID,

Cust_Name, Cust_Address, Cust_City, Cust_PIN, Cust_State, Cust_Phone, Cust_Email,

Cust_Pan, Cust_GSTIN, Cust_Type, and SR_ID.

 Dim cmd As Object

 Set cmd = CreateObject("ADODB.command")

 Dim newCustID As String

 newCustID = TxtCustID.Value

 If CustIDExists(newCustID) Then

 MsgBox "Cust_ID already exists. Please enter a unique Cust_ID.", vbExclamation,

"Duplicate Cust-ID... Gautam Banerjee"

 Exit Sub

 End If

In this section of the code, a new ADODB Command object is created to execute the SQL

query. Before executing the query, it checks if the entered Cust_ID already exists in the

records. If it does, a message box is displayed to inform the user about the duplicate

Cust_ID and to prompt them to enter a unique one. The "CustIDExists" function is being

called to perform this check. If the Cust_ID is found to be a duplicate, the code exits the

subprocedure using the "Exit Sub" statement.

 With cmd

 .ActiveConnection = conn

 .CommandText = sql

 .CommandType = 1

 ' Add parameters and set their values

 .Parameters.Append .CreateParameter("@Cust_ID", 200, 1, 255, TxtCustID.Value)

' 200: adVarChar, 255: max length

 .Parameters.Append .CreateParameter("@Cust_Name", 200, 1, 255,

TxtCustName.Value)

 .Parameters.Append .CreateParameter("@Cust_Address", 200, 1, 255,

TxtCustAdd.Value)

 .Parameters.Append .CreateParameter("@Cust_City", 200, 1, 255,

TxtCustCity.Value)

 .Parameters.Append .CreateParameter("@Cust_PIN", 200, 1, 255,

TxtCustPin.Value)

 .Parameters.Append .CreateParameter("@Cust_State", 200, 1, 255,

StatesList.Value)

 .Parameters.Append .CreateParameter("@Cust_Phone", 200, 1, 255,

TxtCustPhone.Value)

 .Parameters.Append .CreateParameter("@Cust_Email", 200, 1, 255,

TxtCustEmail.Value)

 .Parameters.Append .CreateParameter("@Cust_Pan", 200, 1, 255,

TxtCustPan.Value)

 .Parameters.Append .CreateParameter("@Cust_GSTIN", 200, 1, 255,

TxtCustGstin.Value)

 .Parameters.Append .CreateParameter("@Cust_Type", 200, 1, 255, CustSD.Value)

 .Parameters.Append .CreateParameter("@SR_ID", 200, 1, 255, TxtSRID.Value)

 .Execute

 End With

In this portion of the code, the ADODB Command object "cmd" is being configured to

execute the SQL query using the connection "conn". Parameters are appended to the

command to represent the values that need to be inserted into the database. The

"CreateParameter" method is used to create each parameter, and their values are

assigned based on the corresponding fields in the user form.

After setting up the parameters, the "Execute" method is called on the command object

to execute the SQL statement, which results in the insertion of the new customer record

into the database table "Customer_Master".

 conn.Close

 Set conn = Nothing

 Set cmd = Nothing

 CmdSave.Enabled = True

 'DoCmd.Requery

End Sub

In this part of the code, the database connection "conn" is being closed to release the

resources associated with it. Additionally, both the "conn" and "cmd" objects are set to

"Nothing" to clear their references and release memory.

After these cleanup steps, the "CmdSave" button on the user form is re-enabled, allowing

the user to save additional records. The commented out line "DoCmd.Requery" suggests

that there might be an intention to refresh the data displayed on the form, but since this

code appears to be in the context of Excel VBA, "DoCmd.Requery" is not applicable.

Instead, you might want to consider calling a function to update the list or perform any

necessary refresh of the user interface.

Function: To check if newly entered data exists in the database or not?

Function CustIDExists(custID As String) As Boolean

 Dim ws As Worksheet

 Set ws = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastRow As Long

 lastRow = ws.Cells(ws.Rows.Count, "A").End(xlUp).Row

 Dim rng As Range

 Set rng = ws.Range("A2:A" & lastRow)

 Dim cell As Range

CustIDExists = False

For Each cell In rng

 If cell.Value = custID Then

 CustIDExists = True

 Exit Function

 End If

Next cell

End Function

The code defines a function named "CustIDExists" that checks whether a given customer

ID (custID) already exists in a specific Excel worksheet ("Customer_Master"). The

function iterates through the range of customer IDs in the worksheet and returns a

Boolean value indicating whether the provided custID exists in the dataset or not. If the

custID is found, the function returns True; otherwise, it returns False. This function is

useful for preventing duplicate customer IDs in a database.

Save Button Coding:

Private Sub CmdSave_Click()

 Dim newCustID As String

 newCustID = TxtCustID.Value

 If CustIDExists(newCustID) Then

 MsgBox "Cust_ID already exists. Please enter a unique Cust_ID.", vbExclamation,

"Duplicate Cust-ID... Gautam Banerjee"

 Exit Sub

 End If

 SaveDatatoExcel

 SaveDatatoAccess

 CmdSave.Enabled = False

 CmdAdd.Enabled = True

 TxtBoxBlank

End Sub

The code snippet is for the "CmdSave_Click" (Mentione your CmdBtn name) event in an

Excel VBA userform. It performs the following actions when the "Save" button is clicked:

It retrieves the new customer ID (newCustID) from the TxtCustID textbox.

It uses the CustIDExists function to check if the new customer ID already exists in the

dataset.

If the customer ID already exists, it displays a message box indicating the duplication and

exits the subroutine.

If the customer ID is unique, it calls two functions: SaveDatatoExcel and

SaveDatatoAccess to save the entered data to both an Excel worksheet and an Access

database.

It disables the "Save" button and enables the "Add" button.

It clears the input fields using the TxtBoxBlank subroutine.

This code ensures that the data is properly validated and saved while preventing duplicate

customer IDs in both Excel and Access data sources.

If you have any queries, please visit our "Contact Me" page.

Thank You. See you again!

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

