v
F 7 Customer Master View and Edit Form |

Select a Customer Name or Move the Record using the Action Buttons below

SelectName | | Agarwa)Traders Z PANCardNo. | ABCDE1234K

Customer ID s03 Customer GSTIN | | 19ABCDE1234K122
Customer Name | S.K.Enterprises Customer Type I Sundry Debitors
Customer Mdress] [Burra Bazar S.R.ID SROS

MI | e Software developed by Gautam Banerjee |
Customer PIN | 700009

Customer State [West Bengal

Telephone No. | 1234569870

Eimail ID | skenterpri

How/toluselActionButto

Excel VBA UserForm Tutorial: Create Action
Buttons & Clickable List for Customer Data

Private Sub PopulateListBox()
' Populate the list box with customer names
Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim lastRow As Long

lastRow = ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

Dim rng As Range

Set rng =ws.Range("B2:B" & lastRow)

TxtNameViewlList.Clear

TxtNameViewList.List =rng.Value

End Sub

The PopulateListBox subroutine is designed to populate a list box hamed
TxtNameViewList with customer names from a specified range on the
"Customer_Master" worksheet. Here's a breakdown of the code:

Worksheet Reference Setup: The code sets up a reference to the
"Customer_Master" worksheet using the variable ws.

Determine Last Row: It calculates the last row of data in column A of the
worksheet using the lastRow variable. This is achieved by finding the last
non-empty cell in column A using the End(xIUp) method.

Range Definition: A range named rng is defined to cover the range of
customer names in column B, starting from row 2 to the last row.

Clear List Box: The Clear method is used to remove any existing items in the
TxtNameViewList list box, ensuring a clean slate for new data.

Populate List Box: The List property of the TxtNameViewList list box is set to
the values from the rng range. This effectively fills the list box with the
customer names from the specified range.

In summary, the PopulateListBox subroutine prepares the TxtNameViewList
list box by clearing it and then populating it with customer names fetched
from the "Customer_Master" worksheet.

Private Sub ShowRecord(recordindex As Long)

Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim lastRow As Long

lastRow = ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

If recordindex < 1 Then recordindex = 1

If recordindex > lastRow - 1 Then recordindex = lastRow - 1

currentRow = recordindex

LbIRecordNo.Caption = "Record No. " & currentRow & " of " & lastRow -

TxtViewlID.Value = ws.Cells(recordindex + 1, 1).Value
TxtViewName.Value = ws.Cells(recordindex + 1, 2).Value
TxtViewAdd.Value = ws.Cells(recordindex + 1, 3).Value
TxtViewCity.Value = ws.Cells(recordindex + 1, 4).Value
TxtViewPIN.Value = ws.Cells(recordindex + 1, 5).Value
TxtViewState.Value = ws.Cells(recordindex + 1, 6).Value
TxtViewPhone.Value = ws.Cells(recordIindex + 1, 7).Value
TxtViewEmail.Value = ws.Cells(recordindex + 1, 8).Value

TxtViewPAN.Value = ws.Cells(recordindex + 1, 9).Value

If ws.Cells(recordindex, 12).Value ="SD" Then
TxtViewType.Value = "Sundry Debitors"
Else

TxtViewType.Value = "Sundry Creditors"

End If

TXtViewGSTIN.Value = ws.Cells(recordindex + 1, 11).Value
TxtViewSRID.Value = ws.Cells(recordindex + 1, 13).Value

CmdUpdate.Enabled = False

CmdViewCancel.Enabled = False

End Sub

This code is part of a VBA user form that is used to display customer records. The
purpose of the ShowRecord subroutine is to show the details of a specific customer
record based on the recordindex parameter.

Here's how the code works step by step:
It sets up a reference to the "Customer_Master" worksheet in the workbook.

It determines the last row with data in column "A" of the worksheet. This helps in
finding out the total number of records in the dataset.

It performs bounds checking on the recordindex parameter to ensure that it falls
within a valid range. If recordindex is less than 1, it's set to 1 (to ensure it doesn't
go below the first record). If recordindex is greater than the last valid record index,
it's set to the last valid index (to prevent going beyond the last record).

The currentRow variable is updated with the corrected recordindex. This variable
might be used elsewhere in the code to keep track of the current record being
displayed.

The label LbIRecordNo is updated with a caption indicating the current record
number and the total number of records, e.g., "Record No. 2 of 10". This provides
the user with context about the displayed record within the dataset.

The rest of the code in this snippet likely involves populating various text boxes and
controls on the user form with the details of the customer record specified by the
recordindex. This way, the user can navigate through the records using buttons or
other controls and see the corresponding record details.

These two lines of code are disabling certain command buttons (CmdUpdate and
CmdViewCancel) on the user form. Disabling a button means that it becomes
unclickable and visually appears in a disabled state, indicating that the associated
action is not currently available.

Here's what each line does:

CmdUpdate.Enabled = False: This line sets the Enabled property of the CmdUpdate
command button to False. This means that the "Update" button (CmdUpdate) is
being disabled, and users won't be able to click on it to perform an update action.

CmdViewCancel.Enabled = False: Similarly, this line sets the Enabled property of
the CmdViewCancel command button to False. It disables the "Cancel" button
(CmdViewCancel), preventing users from clicking on it to cancel a view or
operation.

Disabling buttons can be useful in scenarios where certain actions are not
applicable or allowed under certain conditions. In this case, it seems that these
buttons are being disabled, likely in response to some logic in your user form that
determines when these actions should be available and when they should be
disabled.

Private Sub TxtNameViewlList_Click()

Dim selectedName As String

selectedName = TxtNameViewList.Value

Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim rng As Range

Set rng = ws.Columns("B:B").Find(What:=selectedName, LooklIn:=xIValues,
LookAt:=xIWhole)

If Not rng Is Nothing Then
Dim recordindex As Long

recordindex = rng.Row - 1 ' Adjust for header row

ShowRecord recordindex

End If

End Sub

This code is associated with the Click event of a control named TxtNameViewlList,
which seems to be a text box control on your user form. This code is executed when
the user clicks on the text box, presumably to select a customer name from the list.

Here's what this code does:

Dim selectedName As String: This line declares a variable selectedName to store
the name selected by the user from the text box.

selectedName = TxtNameViewList.Value: This line assigns the value of the selected
text from the text box TxtNameViewList to the selectedName variable.

Dim ws As Worksheet...: This section of code sets up a reference to the
"Customer_Master" worksheet in the workbook. It's used to look up the selected
customer name in the list.

Dim rng As Range...: This line sets up a Range variable rng that will be used to search
for the selected customer name within the column of customer names in the
worksheet.

Set rng = ws.Columns("B:B").Find...: This line searches the entire column "B" (the
second column) for the value of selectedName. It uses the Find method to locate
the cell containing the selected name.

If Not rng Is Nothing Then: This line checks if a matching cell was found using the
Find method. If a match is found, the code inside the If block will be executed.

Dim recordindex As Long...: This line declares a variable recordindex to store the
row index of the found cell. It adjusts the index by subtracting 1 to account for the
header row.

ShowRecord recordindex: This line calls the ShowRecord subroutine and passes the
recordIindex as an argument. This will display the details of the selected customer
record on the user form.

In summary, this code handles the event when a customer name is selected from
the text box. It searches for the selected name in the worksheet, and if found, it
displays the corresponding customer record using the ShowRecord subroutine.

Private Sub UserForm_Initialize()

"Initialize the user form

PopulateListBox

ShowRecord 1 ' Display the first record initially

End Sub

This code is part of the initialization process of a user form in Excel VBA. It's
executed automatically when the user form is loaded. Here's what this code does:

PopulateListBox: This line calls the PopulatelListBox subroutine. This subroutine is
responsible for populating a list box (presumably named TxtNameViewList) with
customer names.

ShowRecord 1: This line calls the ShowRecord subroutine and passes the value 1 as
an argument. This will display the details of the first customer record in the form.

In summary, when the user form is initialized, the PopulatelListBox subroutine is
called to populate the list box with customer names, and the ShowRecord
subroutine is called to display the details of the first customer record in the form.
This provides an initial view of the user form when it is opened.

Private Sub BtnNext_Click()

If currentRow > lastRow - 1 Then
currentRow = currentRow + 1
ShowRecord (currentRow)

End If

End Sub

Private Sub BtnPrev_Click()

If currentRow >0 Then
currentRow = currentRow - 1
ShowRecord (currentRow)

End If

End Sub

These event handler procedures are associated with the "Next" and "Previous"
buttons in your user form. They allow the user to navigate through the records
displayed in the form. Here's what each of these procedures does:

BtnNext_Click:

Checks if the current row index (currentRow) is less than the last row index (lastRow
- 1). This check ensures that you don't move beyond the last record.

If the check is true, it increments the currentRow index by 1 to move to the next
record.

Calls the ShowRecord subroutine and passes the updated currentRow index as an
argument. This will update the form to display the details of the next record.

BtnPrev_Click:

Checks if the current row index (currentRow) is greater than 0. This check ensures
that you don't move before the first record.

If the check is true, it decrements the currentRow index by 1 to move to the
previous record.

Calls the ShowRecord subroutine and passes the updated currentRow index as an
argument. This will update the form to display the details of the previous record.

In summary, these procedures allow the user to navigate through the records in
the user form by clicking the "Next" and "Previous" buttons. The ShowRecord
subroutine is called to update the displayed record based on the new currentRow
index.

Private Sub BtnFirst_Click()
ShowRecord 1
End Sub

Private Sub BtnLast_Click()

Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim lastRow As Long

lastRow = ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

ShowRecord lastRow - 1

LbIRecordNo.Caption = "Record No. " & lastRow - 1 & " of " & lastRow - 1
End Sub

These event handler procedures are associated with the "First" and "Last" buttons
in your user form. They allow the user to quickly navigate to the first and last
records in the displayed records. Here's what each of these procedures does:

BtnFirst_Click:

Calls the ShowRecord subroutine and passes 1 as an argument. This will update the
form to display the details of the first record.

It also updates the label LbIRecordNo.Caption to display "Record No. 1 of [Total
Records - 1]". This informs the user that they are viewing the first record.

BtnLast_Click:

Retrieves the total number of rows (records) in the worksheet using the lastRow
variable.

Calls the ShowRecord subroutine and passes lastRow - 1 as an argument. This will
update the form to display the details of the last record.

Updates the label LbIRecordNo.Caption to display "Record No. [Total Records - 1]
of [Total Records - 1]". This informs the user that they are viewing the last record.

In summary, these procedures provide the user with the ability to jump to the first
and last records in the user form. The ShowRecord subroutine is called to update

the displayed record details accordingly, and the label is updated to provide context
to the user about the record they are viewing.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

D@NAT Pay by UPI

9748327614

