T — How to Create by Excel VBA

Savdeep Sarvahl
Pooaam Divit
Rafibul Ahsmed ey o
Mase) l‘)hhl\ C N —
AN Krishnamurthy e ey -
SR Detalls wbesr v b s s
. . b ’ - Teb et b
T - “otwt
SRID 23 (Ao Wy ‘ -
Ve »~ . "N :::
SH Naene Anjali Rathore - e vt enye
- e o -
Total Sales Value 5a 102956500 SI L2 W Rt
Payment Recd Re SRS 1500 e~ e e d s A
'.)‘-'lll"“ K 14625000 ‘_‘: ’ .
B
Close Form Heminder better 1o SR

st e AUROMAted Reminder Letter

Automated Reminder Letter Generation for
Sales Representatives

This VBA code automates the generation of reminder letters to sales representatives,
prompting them to take necessary actions regarding outstanding payments from
customers. The code extracts relevant data from your Excel workbook, populates
predefined Word templates, and creates individual reminder letters for each sales
representative. The letters include critical information such as the sales
representative's name, state, a table displaying due payment details, and an option to
insert a picture for further personalization. This automation streamlines the process

of communicating outstanding payment information to your sales team, improving
efficiency and financial management.

Video Reference: https://youtu.be/600xIm1zVk8

How to create a Word Document - Follow the Instruction:-

1. Prepare a Word document.

https://youtu.be/6oOxIm1zVk8

2. Position the placeholder where you want to display the S.R. (Sales
Representative) details.

3. Insert a table with appropriate headings.

You need three Excel Data Sheets:-

Customer Master (Primary Key: Cust_ID)
SR_Master (Primary Key: SR_ID)

Data (Contains Cust_ID and SR_ID to establish connections with the Customer and SR Master
sheets)

Create a User Form and add the following elements: a List Box, several Labels,
an Image Tool, and two Command Buttons.

Customize the properties such as Name, Caption, Font Format, Color, and Special
Effects for these elements from the Properties Window.

Where to store the pictures of Sales Rep?

To display a sales representative's picture in your User Form when clicking on a
particular row, you need to store the pictures in a location accessible to your VBA
code. Here's a general approach:

Image Storage: Store the sales representatives' pictures in a folder on your computer
or a network drive. Make sure the images are named in a way that associates them
with the sales representatives, such as using their names or IDs as filenames. For
example, you could name the image files after the SR_ID or SR_Name.

Image Path: In your Excel workbook or a separate configuration sheet, you can
maintain a mapping of SR_ID or SR_Name to the corresponding image file's path.
This mapping will allow your VBA code to dynamically load the correct image when
a specific row is clicked.

VBA Code: In your VBA code, you can use the Image control's Picture property to
load and display the image. When a row is clicked, your code should read the

corresponding image path from your mapping, and then set the Picture property of
the Image control to that path.

' Create the full path to the picture based on the SR name and folder
picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path

Folder : D, Dir : VBAEXxcel, SRName : Gautam Banerjee File type : .jpg

If you have a Sales Representative named "Gautam Banerjee," you can name their
picture file "Gautam Banerjee.jpg" or use any other naming convention that makes
it easy to associate each picture with the respective Sales Representative.

For example, if you use the SR_Name as the filename, it simplifies the process of
retrieving the correct image path when a specific Sales Representative is selected
from your User Form. Just ensure that the filenames match the names in your data,
so you can easily map between the Sales Representative's name in your data sheet
and the corresponding image filename.

Dim wsSR As Worksheet, wsData As Worksheet

Declaring variables outside of procedures (at the top of the code window) has several
important advantages and is considered a best practice in VBA programming.

You can declare multiple variables on the same line, separated by commas, as you've
done with Dim wsData As Worksheet, wsSR As Worksheet. This is a valid way to
declare and initialize multiple variables of the same type in a single line. It can make
your code more compact and easier to read when you have multiple variables of the
same type to declare.

Private Sub FrmExit_Click()
Unload Me
End Sub

UserForm's "Exit" button click event. When this button is clicked, it unloads (closes)
the UserForm. This is a common practice when you want to close a UserForm or
exit a specific part of your VBA program.

Here's what this code does:

Private Sub FrmExit_Click(): This line signifies the beginning of a private
subroutine (Sub) named FrmExit_Click. It's associated with a UserForm's "Click"
event for an object named "FrmExit." The Private keyword means that this Sub is
only accessible within the module where it's defined.

Unload Me: This line is the action performed when the "Exit" button (or object
named "FrmExit") is clicked. Unload Me unloads (closes) the current UserForm (Me
refers to the current instance of the UserForm), effectively closing it and returning
control to the calling code or the Excel interface.

So, when you click the "Exit" button on the UserForm, this code is executed, and the
UserForm is closed. This is a common way to provide an exit or close functionality
in a UserForm.

Private Sub ListBoxSRPopulate()
Dim lastSRRow As Long

Dim i As Long

' Set a reference to the "SR_Master" worksheet
Set wsSR = ThisWorkbook.Sheets("SR_Master")

" Find the last used row in the "SR_Master" sheet

lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xIUp).row ' Assuming
data starts from column B

" Loop through the "SR_Master" sheet and populate the ProductList ListBox
For i =2 To lastSRRow ' Assuming the data starts from row 2

SRNameList.AddItem wsSR.Cells(i, 2).value ' SR_Name (second column)
Next i

" Initialize variables to store select'ed values
SRID =""
SRName =""

End Sub

The code is a VBA subroutine that populates a ListBox named SRNameL.ist with
values from the "SR_Master" worksheet in Excel. It also initializes two variables,
SRID and SRName, to store the selected values from the ListBox. Here's a
breakdown of what the code does:

Private Sub ListBoxSRPopulate(): This line defines a private subroutine named
ListBoxSRPopulate. It's typically associated with an event, such as the initialization
of a UserForm.

Dim lastSRRow As Long and Dim i As Long: These lines declare two variables,
lastSRRow and i, both with a Long data type. lastSRRow will be used to store the
last used row in the "SR_Master" worksheet, and i will be used as a loop counter.

Set wsSR = ThisWorkbook.Sheets(**'SR_Master™*): This line sets a reference to
the "SR_Master" worksheet within the current workbook (ThisWorkbook).

lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A™"™).End(xIUp).Row: This line
finds the last used row in column A of the "SR_Master" worksheet by starting from
the bottom and moving upwards until it encounters the last non-empty cell. The
result is stored in the lastSRRow variable.

For i = 2 To lastSRRow: This line starts a For loop that iterates from 2 (assuming
data starts from row 2) to the lastSRRow.

SRNameL.ist.AddItem wsSR.Cells(i, 2).Value: Inside the loop, this line adds items
to the SRNameL.ist ListBox. It retrieves the value from the "SR _Master" worksheet
in the current row (specified by i) and the second column (column B) and adds it to
the ListBox.

SRID = """ and SRName = """": These lines initialize two variables, SRID and
SRName, with empty strings. These variables are used to store the selected values
from the ListBox.

Overall, this code is designed to populate a ListBox (SRNameL.ist) with values from
the "SR_Master" worksheet and prepare two variables (SRID and SRName) to store
the selected values. It's often used in the initialization of a UserForm or in response
to a specific event that requires loading data into the ListBox

Private Sub UserForm_Initialize()
ListBoxSRPopulate
End Sub

The code is a part of a VBA UserForm and is associated with the UserForm's
"Initialize" event. Here's what it does:

Private Sub UserForm_Initialize(): This line defines a private subroutine named
UserForm_Initialize. This subroutine is automatically executed when the UserForm
Is initialized or loaded.

ListBoxSRPopulate: This line calls another subroutine named ListBoxSRPopulate.
This is done to populate a ListBox control with data from the "SR_Master"
worksheet when the UserForm is initialized.

In summary, when the UserForm is initialized, the ListBoxSRPopulate subroutine is
automatically called, which in turn populates a ListBox control with data from the
"SR_Master" worksheet. This is a common practice to ensure that the ListBox is
filled with data when the UserForm is displayed to the user.

Private Sub SRNameL.ist_Click()
'On Error Resume Next
Dim selectedSRRow As Long
'Set wsSR = ThisWorkbook.Sheets("SR_Master")
selectedSRRow = SRNameL.ist.ListIndex + 1

SRID = wsSR.Cells(selectedSRRow + 1, 1).value
SRName = wsSR.Cells(selectedSRRow + 1, 2).value

SRIDLDbI.Caption = SRID
SRNameLbl.Caption = SRName

' Create the full path to the picture based on the SR name and folder
picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path
If Dir(picturePath) <> """ Then ' Check if the picture file exists
SRImage.Picture = LoadPicture(picturePath)
Else
SRImage.Picture = LoadPicture("") ' Clear the image if no picture found
End If

SRSalesPopulate
If Err.Number <> 0 Then
MsgBox "Error: " & Err.Description
End If
On Error GoTo 0

End Sub

The code is a VBA subroutine associated with the Click event of a
ListBox named SRNameList on your UserForm. This code is executed
when an item in the ListBox is clicked. Here's a breakdown of what it
does:

Private Sub SRNameL.ist_Click(): This line defines a private subroutine
named SRNameList_Click, which is associated with the Click event of
the SRNameL.ist ListBox.

Dim selectedSRRow As Long: This line declares a variable
selectedSRRow as a Long. This variable will be used to store the selected
row index in the SRNameL.ist ListBox.

selectedSRRow = SRNameL.ist.ListIndex + 1: This line calculates the
selected row index by adding 1 to the Listindex property of the
SRNameList ListBox. The Listindex property indicates which item is
selected in the ListBox, and it starts from O.

SRID = wsSR.Cells(selectedSRRow + 1, 1).Value and SRName =
wsSR.Cells(selectedSRRow + 1, 2).Value: These lines retrieve the values
of the Sales Representative ID (SRID) and Sales Representative Name
(SRName) from the "SR_Master" worksheet based on the selected row in
the SRNameL.ist ListBox.

SRIDLDbI.Caption = SRID and SRNamelLbl.Caption = SRName:
These lines update the captions of two labels (SRIDLbI and SRNameLbl)
on your UserForm with the selected Sales Representative ID and Name.

picturePath = "D:\VBAExcel\" & SRName & ".jpg'': This line
constructs the file path to the Sales Representative's picture based on their
name and a specified folder path. It assumes that pictures are stored as
JPG files with filenames matching the Sales Representative names.

If Dir(picturePath) <> """ Then: This line checks if the picture file exists
in the specified folder.

SRImage.Picture = LoadPicture(picturePath): If the picture file exists,
it loads and displays the picture in an Image control named SRImage on
your UserForm.

Else: If no picture file is found, it clears the image control by setting it to
a blank picture.

SRSalesPopulate: This line calls a subroutine named SRSalesPopulate,
which presumably populates some data related to the selected Sales
Representative.

If Err.Number <> 0 Then: This line checks if any errors occurred during
the execution of the code.

MsgBox "Error: " & Err.Description: If an error occurred, it displays
an error message with a description of the error.

On Error GoTo 0: This line resets the error handling to the default state,
which means that any subsequent errors will not be suppressed.

In summary, this code handles the event when an item in the SRNameL.ist
ListBox is clicked. It updates labels, loads a picture based on the selected
Sales Representative's name, and calls a subroutine to populate additional
data related to the selected Sales Representative. It also includes error
handling to handle any potential errors that may occur during execution.

Download the Below Code

Watch the video, open an Excel workbook, create a form, insert the required tools,
name it, change the captions, format, etc. Double-click anywhere on the form to open
the code window and simply paste the code. That's it. Run the program.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

A

Gautam Banerjee Email: gincom1@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee

PLMSE Age: 63
D@NAT_'/\ Pay by UPI

9748327614

To save an Excel workbook with VBA code enabled, you need to follow these steps:
Open your Excel workbook that contains the VBA code.
Press Alt + F11 to open the Visual Basic for Applications (VBA) editor.

In the VBA editor, make sure your code is saved and ready to be included in the
workbook. Ensure that all your macros and code are working correctly.

Close the VBA editor by clicking the "X" button in the top-right corner or pressing
Ctrl + S to save your code and then closing the VBA editor window.

Go back to your Excel workbook.
Click on "File" in the Excel ribbon to open the File menu.
Choose "Save As" from the menu.

In the Save As dialog box, select the location where you want to save your
workbook.

In the "Save as type" dropdown menu, choose "Excel Macro-Enabled Workbook
(*.xIsm)".

Provide a name for your workbook, and then click the "Save" button.

Your Excel workbook will be saved as a macro-enabled workbook (.xIsm) with the
VBA code included. You can reopen it at any time, and the VBA code will be
available for execution.

Please make sure to keep backups of your workbook, especially if you plan to share
it with others, to prevent accidental loss of your VBA code.

Name of Excel Sheets : Customer_Master, SR_Master, Data
List Box Name : SRNameL.ist
Image Frame Name : SRImage
Command Buttons Name : FrmExit (For Close Form)
: SrReminder (For Letter Printing)

Labels Name : SRIDLDbI (For SR_ID),

: SRNameLDbl (For Name)

. SalesValueL bl (For Total Sales Value)

: Labell (For Paid Amount)

. Label2 (For Due Amount)

Now Start coding:

Dim wsSR As Worksheet
Dim wsData As Worksheet

' This subroutine populates the ListBox with SR names
Private Sub ListBoxSRPopulate()

Dim lastSRRow As Long

Dimi As Long

' Set a reference to the "SR_Master" worksheet

Set wsSR = ThisWorkbook.Sheets("SR_Master")

" Find the last used row in the "SR_Master" sheet

lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xIUp).Row ' Assuming
data starts from column B

" Loop through the "SR_Master" sheet and populate the ProductList ListBox
For i =2 To lastSRRow ' Assuming the data starts from row 2

SRNameL.ist.AddItem wsSR.Cells(i, 2).Value ' SR_Name (second column)
Next i

" Initialize variables to store selected values
SRID =""
SRName =""

End Sub

' This subroutine handles the Click event of the Exit button

Private Sub FrmExit_Click()
Unload Me
End Sub

' This subroutine handles the Click event of the SRNameL.ist ListBox
Private Sub SRNameL.ist_Click()

Dim selectedSRRow As Long

selectedSRRow = SRNameL.ist.ListIndex + 1

' Get SRID and SRName based on the selected row
SRID = wsSR.Cells(selectedSRRow + 1, 1).Value
SRName = wsSR.Cells(selectedSRRow + 1, 2).Value

" Update labels with SR information
SRIDLDbI.Caption = SRID
SRNameLbl.Caption = SRName

' Create the full path to the picture based on the SR name and folder
picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path
If Dir(picturePath) <> "" Then ' Check if the picture file exists
SRImage.Picture = LoadPicture(picturePath)
Else
SRImage.Picture = LoadPicture(*") ' Clear the image if no picture found
End If

' Populate SR sales information
SRSalesPopulate
End Sub

' This subroutine calculates SR sales information
Private Sub SRSalesPopulate()
Dimi As Long

Set wsData = ThisWorkbook.Sheets("Data™)

TotalsrSales =0
totalpaid = 0

totaldues =0

" Loop through the "Data" sheet and calculate total sales for the selected SRID
For i = 2 To wsData.Cells(wsData.Rows.Count, "A™).End(xIUp).Row
If wsData.Cells(i, "J").Value = SRIDLbI.Caption Then
If wsData.Cells(i, "I").Value = "Y" Then
totalpaid = totalpaid + wsData.Cells(i, "E").Value
Else
totaldues = totaldues + wsData.Cells(i, "E").Value
End If
End If
Next i

TotalsrSales = totalpaid + totaldues
SalesValueLbl.Caption = "Rs." & Format(TotalsrSales, "#0.00")
Labell.Caption = "Rs." & Format(totalpaid, "#0.00")
Label2.Caption = "Rs." & Format(totaldues, "#0.00")

End Sub

' This subroutine handles the Click event of the SrReminder button

Private Sub SrReminder_Click()
' Call the GenerateReminderLetters subroutine to generate reminder letters
GenerateReminderLetters

End Sub

' This subroutine generates reminder letters for SRs with outstanding dues
Sub GenerateReminderLetters()
Dim WordApp As Object
Dim WordDoc As Object
Dim wsData As Worksheet
Dim wsSR As Worksheet
Dim wsCust As Worksheet

Dim SRRow As Long

Dim SR_ID As String

Dim SR_Name As String
Dim SR_State As String

Dim ReminderPath As String

Dim ReminderFileName As String

Dim WordTable As Object

Dim WordRange As Object

Dim DocText As String

Dim TotalOutstanding As Double

' Set references to worksheets

Set wsData = ThisWorkbook.Sheets("Data")

Set wsSR = ThisWorkbook.Sheets("SR_Master")

Set wsCust = ThisWorkbook.Sheets(""Customer_Master")

' Define the path for the reminder letters

ReminderPath = Thisworkbook.Path & "\Reminder_Letters\"

' Create the folder if it doesn't exist

If Len(Dir(ReminderPath, vbDirectory)) = 0 Then
MkDir ReminderPath

End If

* Set up Word

On Error Resume Next

Set WordApp = CreateObject("Word.Application™)
On Error GoTo 0

If WordApp Is Nothing Then

MsgBox "Microsoft Word is not installed on this computer. Please install Word
to generate reminder letters."

Exit Sub
End If

WordApp.Visible = True ' Optional: Make Word application visible

" Loop through SR IDs
For SRRow =2 To wsSR.Cells(wsSR.Rows.Count, "A").End(xIUp).Row
SR_ID = wsSR.Cells(SRRow, "A").Value
SR_Name = wsSR.Cells(SRRow, "B").Value
SR_State = wsSR.Cells(SRRow, "C").Value
SR _Image = "D:\VBAExcel\" & SR_Name & ".jpg"
TotalOutstanding = 0

' Create a new Word document based on your template

Set WordDoc = WordApp.Documents.Add(Template:=ThisWorkbook.Path &
"\Reminder_Letters\SRDueL etterwithTable.docx")

' Get the Word table and range
Set WordTable = WordDoc.Tables(1)
Set WordRange = WordDoc.Range

' Replace placeholders in the Word document
With WordRange.Find

Text = "#SRID#"

.Replacement. Text = SR_ID

.Execute Replace:=wdReplaceAll

End With

With WordRange.Find
.Text = "#SRName#"
.Replacement. Text = SR_Name
.Execute Replace:=wdReplaceAll
End With

With WordRange.Find
Text = "#SRState#"
.Replacement.Text = SR_State
.Execute Replace:=wdReplaceAll
End With

" Loop through data and populate the Word table with dues details

On Error Resume Next

For Each Cell In wsData.Range("A2:1" & wsData.Cells(wsData.Rows.Count,
"A").End(x1Up).Row)

If Cell.Offset(0, 8).Value = SR_ID And Cell.Offset(0, 7).Value = "N" Then
WordTable.Rows.Add

WordTable.Cell(WordTable.Rows.Count, 1).Range.Text =
wsData.Cells(Cell.Row, "B").Value ' Customer Name

WordTable.Cell(WordTable.Rows.Count, 2).Range.Text =
wsData.Cells(Cell.Row, "C").Value ' Invoice No

WordTable.Cell(WordTable.Rows.Count, 3).Range.Text =
wsData.Cells(Cell.Row, "D").Value ' Invoice Date

WordTable.Cell(WordTable.Rows.Count, 4).Range.Text
Format(wsData.Cells(Cell.Row, "E").Value, "#0.00") * Amount Dues

TotalOutstanding = TotalOutstanding + wsData.Cells(Cell.Row,
"D").Value

End If
Next Cell
On Error GoTo 0

" Insert the total outstanding amount after the table
WordTable.Rows.Add ' Add an empty row after the table
WordTable.Cell(WordTable.Rows.Count, 3).Range.Text = "Total Dues: Rs. "

WordTable.Cell(WordTable.Rows.Count, 4).Range.Text =
Format(TotalOutstanding, "#0.00")

' Save the document with a unique name
ReminderFileName = ReminderPath & "SRReminder " & SR_ID & ".docx"
WordDoc.SaveAs2 Filename:=ReminderFileName
WordDoc.Close
Next SRRow

' Release Word objects
WordApp.Quit

Set WordDoc = Nothing
Set WordApp = Nothing

MsgBox "Reminder letters have been generated and saved in the
'Reminder_Letters' folder."

End Sub

' This subroutine is executed when the UserForm initializes
Private Sub UserForm_Initialize()
' Populate the SRNameL.ist ListBox when the form initializes
ListBoxSRPopulate
End Sub

Change your Excel Sheet Name, Column name, List Box Name, Command buttons
name, Variables name, File path, Word File Name etc.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Email: gincom1l@yahoo.com

If you have any queries,
please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

Pay by UPI
9748327614

Don't waste time; start today. | am here to help you. If you have any questions,
feel free to ask me. To do so, click on *Contact Me" at the bottom of my web
page and submit your question.

Please note that this website is free and provided by Wix.com. If you want to
learn how to develop your own website without writing a single line of code,
visit my channel and watch videos titled ‘How to Create a Free Website

