

Automated Reminder Letter Generation for

Sales Representatives

This VBA code automates the generation of reminder letters to sales representatives,

prompting them to take necessary actions regarding outstanding payments from

customers. The code extracts relevant data from your Excel workbook, populates

predefined Word templates, and creates individual reminder letters for each sales

representative. The letters include critical information such as the sales

representative's name, state, a table displaying due payment details, and an option to

insert a picture for further personalization. This automation streamlines the process

of communicating outstanding payment information to your sales team, improving

efficiency and financial management.

Video Reference: https://youtu.be/6oOxIm1zVk8

How to create a Word Document - Follow the Instruction:-

1. Prepare a Word document.

https://youtu.be/6oOxIm1zVk8

2. Position the placeholder where you want to display the S.R. (Sales

Representative) details.

3. Insert a table with appropriate headings.

You need three Excel Data Sheets:-

Customer Master (Primary Key: Cust_ID)

SR_Master (Primary Key: SR_ID)

Data (Contains Cust_ID and SR_ID to establish connections with the Customer and SR Master

sheets)

Create a User Form and add the following elements: a List Box, several Labels,

an Image Tool, and two Command Buttons.

Customize the properties such as Name, Caption, Font Format, Color, and Special

Effects for these elements from the Properties Window.

Where to store the pictures of Sales Rep?

To display a sales representative's picture in your User Form when clicking on a

particular row, you need to store the pictures in a location accessible to your VBA

code. Here's a general approach:

Image Storage: Store the sales representatives' pictures in a folder on your computer

or a network drive. Make sure the images are named in a way that associates them

with the sales representatives, such as using their names or IDs as filenames. For

example, you could name the image files after the SR_ID or SR_Name.

Image Path: In your Excel workbook or a separate configuration sheet, you can

maintain a mapping of SR_ID or SR_Name to the corresponding image file's path.

This mapping will allow your VBA code to dynamically load the correct image when

a specific row is clicked.

VBA Code: In your VBA code, you can use the Image control's Picture property to

load and display the image. When a row is clicked, your code should read the

corresponding image path from your mapping, and then set the Picture property of

the Image control to that path.

' Create the full path to the picture based on the SR name and folder

picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path

Folder : D, Dir : VBAExcel, SRName : Gautam Banerjee File type : .jpg

If you have a Sales Representative named "Gautam Banerjee," you can name their

picture file "Gautam Banerjee.jpg" or use any other naming convention that makes

it easy to associate each picture with the respective Sales Representative.

For example, if you use the SR_Name as the filename, it simplifies the process of

retrieving the correct image path when a specific Sales Representative is selected

from your User Form. Just ensure that the filenames match the names in your data,

so you can easily map between the Sales Representative's name in your data sheet

and the corresponding image filename.

Dim wsSR As Worksheet, wsData As Worksheet

Declaring variables outside of procedures (at the top of the code window) has several

important advantages and is considered a best practice in VBA programming.

You can declare multiple variables on the same line, separated by commas, as you've

done with Dim wsData As Worksheet, wsSR As Worksheet. This is a valid way to

declare and initialize multiple variables of the same type in a single line. It can make

your code more compact and easier to read when you have multiple variables of the

same type to declare.

Private Sub FrmExit_Click()

 Unload Me

End Sub

UserForm's "Exit" button click event. When this button is clicked, it unloads (closes)

the UserForm. This is a common practice when you want to close a UserForm or

exit a specific part of your VBA program.

Here's what this code does:

Private Sub FrmExit_Click(): This line signifies the beginning of a private

subroutine (Sub) named FrmExit_Click. It's associated with a UserForm's "Click"

event for an object named "FrmExit." The Private keyword means that this Sub is

only accessible within the module where it's defined.

Unload Me: This line is the action performed when the "Exit" button (or object

named "FrmExit") is clicked. Unload Me unloads (closes) the current UserForm (Me

refers to the current instance of the UserForm), effectively closing it and returning

control to the calling code or the Excel interface.

So, when you click the "Exit" button on the UserForm, this code is executed, and the

UserForm is closed. This is a common way to provide an exit or close functionality

in a UserForm.

Private Sub ListBoxSRPopulate()

 Dim lastSRRow As Long

 Dim i As Long

 ' Set a reference to the "SR_Master" worksheet

 Set wsSR = ThisWorkbook.Sheets("SR_Master")

 ' Find the last used row in the "SR_Master" sheet

 lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xlUp).row ' Assuming

data starts from column B

 ' Loop through the "SR_Master" sheet and populate the ProductList ListBox

 For i = 2 To lastSRRow ' Assuming the data starts from row 2

 SRNameList.AddItem wsSR.Cells(i, 2).value ' SR_Name (second column)

 Next i

 ' Initialize variables to store select'ed values

 SRID = ""

 SRName = ""

End Sub

The code is a VBA subroutine that populates a ListBox named SRNameList with

values from the "SR_Master" worksheet in Excel. It also initializes two variables,

SRID and SRName, to store the selected values from the ListBox. Here's a

breakdown of what the code does:

Private Sub ListBoxSRPopulate(): This line defines a private subroutine named

ListBoxSRPopulate. It's typically associated with an event, such as the initialization

of a UserForm.

Dim lastSRRow As Long and Dim i As Long: These lines declare two variables,

lastSRRow and i, both with a Long data type. lastSRRow will be used to store the

last used row in the "SR_Master" worksheet, and i will be used as a loop counter.

Set wsSR = ThisWorkbook.Sheets("SR_Master"): This line sets a reference to

the "SR_Master" worksheet within the current workbook (ThisWorkbook).

lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xlUp).Row: This line

finds the last used row in column A of the "SR_Master" worksheet by starting from

the bottom and moving upwards until it encounters the last non-empty cell. The

result is stored in the lastSRRow variable.

For i = 2 To lastSRRow: This line starts a For loop that iterates from 2 (assuming

data starts from row 2) to the lastSRRow.

SRNameList.AddItem wsSR.Cells(i, 2).Value: Inside the loop, this line adds items

to the SRNameList ListBox. It retrieves the value from the "SR_Master" worksheet

in the current row (specified by i) and the second column (column B) and adds it to

the ListBox.

SRID = "" and SRName = "": These lines initialize two variables, SRID and

SRName, with empty strings. These variables are used to store the selected values

from the ListBox.

Overall, this code is designed to populate a ListBox (SRNameList) with values from

the "SR_Master" worksheet and prepare two variables (SRID and SRName) to store

the selected values. It's often used in the initialization of a UserForm or in response

to a specific event that requires loading data into the ListBox

Private Sub UserForm_Initialize()

 ListBoxSRPopulate

End Sub

The code is a part of a VBA UserForm and is associated with the UserForm's

"Initialize" event. Here's what it does:

Private Sub UserForm_Initialize(): This line defines a private subroutine named

UserForm_Initialize. This subroutine is automatically executed when the UserForm

is initialized or loaded.

ListBoxSRPopulate: This line calls another subroutine named ListBoxSRPopulate.

This is done to populate a ListBox control with data from the "SR_Master"

worksheet when the UserForm is initialized.

In summary, when the UserForm is initialized, the ListBoxSRPopulate subroutine is

automatically called, which in turn populates a ListBox control with data from the

"SR_Master" worksheet. This is a common practice to ensure that the ListBox is

filled with data when the UserForm is displayed to the user.

Private Sub SRNameList_Click()

 'On Error Resume Next

 Dim selectedSRRow As Long

 'Set wsSR = ThisWorkbook.Sheets("SR_Master")

 selectedSRRow = SRNameList.ListIndex + 1

 SRID = wsSR.Cells(selectedSRRow + 1, 1).value

 SRName = wsSR.Cells(selectedSRRow + 1, 2).value

 SRIDLbl.Caption = SRID

 SRNameLbl.Caption = SRName

 ' Create the full path to the picture based on the SR name and folder

 picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path

 If Dir(picturePath) <> "" Then ' Check if the picture file exists

 SRImage.Picture = LoadPicture(picturePath)

 Else

 SRImage.Picture = LoadPicture("") ' Clear the image if no picture found

 End If

 SRSalesPopulate

 If Err.Number <> 0 Then

 MsgBox "Error: " & Err.Description

 End If

 On Error GoTo 0

End Sub

The code is a VBA subroutine associated with the Click event of a

ListBox named SRNameList on your UserForm. This code is executed

when an item in the ListBox is clicked. Here's a breakdown of what it

does:

Private Sub SRNameList_Click(): This line defines a private subroutine

named SRNameList_Click, which is associated with the Click event of

the SRNameList ListBox.

Dim selectedSRRow As Long: This line declares a variable

selectedSRRow as a Long. This variable will be used to store the selected

row index in the SRNameList ListBox.

selectedSRRow = SRNameList.ListIndex + 1: This line calculates the

selected row index by adding 1 to the ListIndex property of the

SRNameList ListBox. The ListIndex property indicates which item is

selected in the ListBox, and it starts from 0.

SRID = wsSR.Cells(selectedSRRow + 1, 1).Value and SRName =

wsSR.Cells(selectedSRRow + 1, 2).Value: These lines retrieve the values

of the Sales Representative ID (SRID) and Sales Representative Name

(SRName) from the "SR_Master" worksheet based on the selected row in

the SRNameList ListBox.

SRIDLbl.Caption = SRID and SRNameLbl.Caption = SRName:

These lines update the captions of two labels (SRIDLbl and SRNameLbl)

on your UserForm with the selected Sales Representative ID and Name.

picturePath = "D:\VBAExcel\" & SRName & ".jpg": This line

constructs the file path to the Sales Representative's picture based on their

name and a specified folder path. It assumes that pictures are stored as

JPG files with filenames matching the Sales Representative names.

If Dir(picturePath) <> "" Then: This line checks if the picture file exists

in the specified folder.

SRImage.Picture = LoadPicture(picturePath): If the picture file exists,

it loads and displays the picture in an Image control named SRImage on

your UserForm.

Else: If no picture file is found, it clears the image control by setting it to

a blank picture.

SRSalesPopulate: This line calls a subroutine named SRSalesPopulate,

which presumably populates some data related to the selected Sales

Representative.

If Err.Number <> 0 Then: This line checks if any errors occurred during

the execution of the code.

MsgBox "Error: " & Err.Description: If an error occurred, it displays

an error message with a description of the error.

On Error GoTo 0: This line resets the error handling to the default state,

which means that any subsequent errors will not be suppressed.

In summary, this code handles the event when an item in the SRNameList

ListBox is clicked. It updates labels, loads a picture based on the selected

Sales Representative's name, and calls a subroutine to populate additional

data related to the selected Sales Representative. It also includes error

handling to handle any potential errors that may occur during execution.

Watch the video, open an Excel workbook, create a form, insert the required tools,

name it, change the captions, format, etc. Double-click anywhere on the form to open

the code window and simply paste the code. That's it. Run the program.

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

To save an Excel workbook with VBA code enabled, you need to follow these steps:

Open your Excel workbook that contains the VBA code.

Press Alt + F11 to open the Visual Basic for Applications (VBA) editor.

In the VBA editor, make sure your code is saved and ready to be included in the

workbook. Ensure that all your macros and code are working correctly.

Close the VBA editor by clicking the "X" button in the top-right corner or pressing

Ctrl + S to save your code and then closing the VBA editor window.

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

Go back to your Excel workbook.

Click on "File" in the Excel ribbon to open the File menu.

Choose "Save As" from the menu.

In the Save As dialog box, select the location where you want to save your

workbook.

In the "Save as type" dropdown menu, choose "Excel Macro-Enabled Workbook

(*.xlsm)".

Provide a name for your workbook, and then click the "Save" button.

Your Excel workbook will be saved as a macro-enabled workbook (.xlsm) with the

VBA code included. You can reopen it at any time, and the VBA code will be

available for execution.

Please make sure to keep backups of your workbook, especially if you plan to share

it with others, to prevent accidental loss of your VBA code.

Name of Excel Sheets : Customer_Master, SR_Master, Data

List Box Name : SRNameList

Image Frame Name : SRImage

Command Buttons Name : FrmExit (For Close Form)

 : SrReminder (For Letter Printing)

Labels Name : SRIDLbl (For SR_ID),

 : SRNameLbl (For Name)

 : SalesValueLbl (For Total Sales Value)

 : Label1 (For Paid Amount)

 : Label2 (For Due Amount)

Now Start coding:

Dim wsSR As Worksheet

Dim wsData As Worksheet

' This subroutine populates the ListBox with SR names

Private Sub ListBoxSRPopulate()

 Dim lastSRRow As Long

 Dim i As Long

 ' Set a reference to the "SR_Master" worksheet

 Set wsSR = ThisWorkbook.Sheets("SR_Master")

 ' Find the last used row in the "SR_Master" sheet

 lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xlUp).Row ' Assuming

data starts from column B

 ' Loop through the "SR_Master" sheet and populate the ProductList ListBox

 For i = 2 To lastSRRow ' Assuming the data starts from row 2

 SRNameList.AddItem wsSR.Cells(i, 2).Value ' SR_Name (second column)

 Next i

 ' Initialize variables to store selected values

 SRID = ""

 SRName = ""

End Sub

' This subroutine handles the Click event of the Exit button

Private Sub FrmExit_Click()

 Unload Me

End Sub

' This subroutine handles the Click event of the SRNameList ListBox

Private Sub SRNameList_Click()

 Dim selectedSRRow As Long

 selectedSRRow = SRNameList.ListIndex + 1

 ' Get SRID and SRName based on the selected row

 SRID = wsSR.Cells(selectedSRRow + 1, 1).Value

 SRName = wsSR.Cells(selectedSRRow + 1, 2).Value

 ' Update labels with SR information

 SRIDLbl.Caption = SRID

 SRNameLbl.Caption = SRName

 ' Create the full path to the picture based on the SR name and folder

 picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path

 If Dir(picturePath) <> "" Then ' Check if the picture file exists

 SRImage.Picture = LoadPicture(picturePath)

 Else

 SRImage.Picture = LoadPicture("") ' Clear the image if no picture found

 End If

 ' Populate SR sales information

 SRSalesPopulate

End Sub

' This subroutine calculates SR sales information

Private Sub SRSalesPopulate()

 Dim i As Long

 Set wsData = ThisWorkbook.Sheets("Data")

 TotalsrSales = 0

 totalpaid = 0

 totaldues = 0

 ' Loop through the "Data" sheet and calculate total sales for the selected SRID

 For i = 2 To wsData.Cells(wsData.Rows.Count, "A").End(xlUp).Row

 If wsData.Cells(i, "J").Value = SRIDLbl.Caption Then

 If wsData.Cells(i, "I").Value = "Y" Then

 totalpaid = totalpaid + wsData.Cells(i, "E").Value

 Else

 totaldues = totaldues + wsData.Cells(i, "E").Value

 End If

 End If

 Next i

 TotalsrSales = totalpaid + totaldues

 SalesValueLbl.Caption = "Rs." & Format(TotalsrSales, "#0.00")

 Label1.Caption = "Rs." & Format(totalpaid, "#0.00")

 Label2.Caption = "Rs." & Format(totaldues, "#0.00")

End Sub

' This subroutine handles the Click event of the SrReminder button

Private Sub SrReminder_Click()

 ' Call the GenerateReminderLetters subroutine to generate reminder letters

 GenerateReminderLetters

End Sub

' This subroutine generates reminder letters for SRs with outstanding dues

Sub GenerateReminderLetters()

 Dim WordApp As Object

 Dim WordDoc As Object

 Dim wsData As Worksheet

 Dim wsSR As Worksheet

 Dim wsCust As Worksheet

 Dim SRRow As Long

 Dim SR_ID As String

 Dim SR_Name As String

 Dim SR_State As String

 Dim ReminderPath As String

 Dim ReminderFileName As String

 Dim WordTable As Object

 Dim WordRange As Object

 Dim DocText As String

 Dim TotalOutstanding As Double

 ' Set references to worksheets

 Set wsData = ThisWorkbook.Sheets("Data")

 Set wsSR = ThisWorkbook.Sheets("SR_Master")

 Set wsCust = ThisWorkbook.Sheets("Customer_Master")

 ' Define the path for the reminder letters

 ReminderPath = ThisWorkbook.Path & "\Reminder_Letters\"

 ' Create the folder if it doesn't exist

 If Len(Dir(ReminderPath, vbDirectory)) = 0 Then

 MkDir ReminderPath

 End If

 ' Set up Word

 On Error Resume Next

 Set WordApp = CreateObject("Word.Application")

 On Error GoTo 0

 If WordApp Is Nothing Then

 MsgBox "Microsoft Word is not installed on this computer. Please install Word

to generate reminder letters."

 Exit Sub

 End If

 WordApp.Visible = True ' Optional: Make Word application visible

 ' Loop through SR IDs

 For SRRow = 2 To wsSR.Cells(wsSR.Rows.Count, "A").End(xlUp).Row

 SR_ID = wsSR.Cells(SRRow, "A").Value

 SR_Name = wsSR.Cells(SRRow, "B").Value

 SR_State = wsSR.Cells(SRRow, "C").Value

 SR_Image = "D:\VBAExcel\" & SR_Name & ".jpg"

 TotalOutstanding = 0

 ' Create a new Word document based on your template

 Set WordDoc = WordApp.Documents.Add(Template:=ThisWorkbook.Path &

"\Reminder_Letters\SRDueLetterwithTable.docx")

 ' Get the Word table and range

 Set WordTable = WordDoc.Tables(1)

 Set WordRange = WordDoc.Range

 ' Replace placeholders in the Word document

 With WordRange.Find

 .Text = "#SRID#"

 .Replacement.Text = SR_ID

 .Execute Replace:=wdReplaceAll

 End With

 With WordRange.Find

 .Text = "#SRName#"

 .Replacement.Text = SR_Name

 .Execute Replace:=wdReplaceAll

 End With

 With WordRange.Find

 .Text = "#SRState#"

 .Replacement.Text = SR_State

 .Execute Replace:=wdReplaceAll

 End With

 ' Loop through data and populate the Word table with dues details

 On Error Resume Next

 For Each Cell In wsData.Range("A2:I" & wsData.Cells(wsData.Rows.Count,

"A").End(xlUp).Row)

 If Cell.Offset(0, 8).Value = SR_ID And Cell.Offset(0, 7).Value = "N" Then

 WordTable.Rows.Add

 WordTable.Cell(WordTable.Rows.Count, 1).Range.Text =

wsData.Cells(Cell.Row, "B").Value ' Customer Name

 WordTable.Cell(WordTable.Rows.Count, 2).Range.Text =

wsData.Cells(Cell.Row, "C").Value ' Invoice No

 WordTable.Cell(WordTable.Rows.Count, 3).Range.Text =

wsData.Cells(Cell.Row, "D").Value ' Invoice Date

 WordTable.Cell(WordTable.Rows.Count, 4).Range.Text =

Format(wsData.Cells(Cell.Row, "E").Value, "#0.00") ' Amount Dues

 TotalOutstanding = TotalOutstanding + wsData.Cells(Cell.Row,

"D").Value

 End If

 Next Cell

 On Error GoTo 0

 ' Insert the total outstanding amount after the table

 WordTable.Rows.Add ' Add an empty row after the table

 WordTable.Cell(WordTable.Rows.Count, 3).Range.Text = "Total Dues: Rs. "

 WordTable.Cell(WordTable.Rows.Count, 4).Range.Text =

Format(TotalOutstanding, "#0.00")

 ' Save the document with a unique name

 ReminderFileName = ReminderPath & "SRReminder_" & SR_ID & ".docx"

 WordDoc.SaveAs2 Filename:=ReminderFileName

 WordDoc.Close

 Next SRRow

 ' Release Word objects

 WordApp.Quit

 Set WordDoc = Nothing

 Set WordApp = Nothing

 MsgBox "Reminder letters have been generated and saved in the

'Reminder_Letters' folder."

End Sub

' This subroutine is executed when the UserForm initializes

Private Sub UserForm_Initialize()

 ' Populate the SRNameList ListBox when the form initializes

 ListBoxSRPopulate

End Sub

Change your Excel Sheet Name, Column name, List Box Name, Command buttons

name, Variables name, File path, Word File Name etc.

If you have any queries,

please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Don't waste time; start today. I am here to help you. If you have any questions,

feel free to ask me. To do so, click on 'Contact Me' at the bottom of my web

page and submit your question.

Please note that this website is free and provided by Wix.com. If you want to

learn how to develop your own website without writing a single line of code,

visit my channel and watch videos titled 'How to Create a Free Website

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

