Sales Data Shoet (500 Records) | . [—

i S St S0 S B e
-

- N -

Pt

I

yucnuu!l

i

Product_Master Sheet SR_Master Shoet |

. —— o —-
—-——

§

i

!
i
t

et e - el

T
}
r
|
[§
|
!

‘Howto create Product-wise
Queries for Sales Reps.

1 Report Created using 3 Excel Sheets

Video Link (Current) :
Video Link (Previous) :

It's important to note that this code relies on specific worksheets,
labels, list boxes, and folder paths. Make sure these elements exist and
are correctly named in your Excel workbook for this code to work as
expected. Additionally, the code uses Microsoft Word for generating
reminder letters, so you need to have Word installed on your system

for that functionality to work.

Code Analysis : (SRSalesProdPopulate)

Private Sub SRSalesProdPopulate()
Dim i As Long
Dim ProductSales As Double

Dim ProductID As String

Dim ProductName As Variant

Dim ProductValue As Double

Set wsData = ThisWorkbook.Sheets("Data")
Set wsProductMaster = ThisWorkbook.Sheets("Product_Master")

' Clear the ProductListBox or other controls where you displayed product
sales details

ProductListBox.Clear

' Dictionary to store product-wise total sales
Dim ProductSalesDict As Object
Set ProductSalesDict = CreateObject("Scripting.Dictionary")

' Loop through the "Data" sheet to calculate product-wise total sales
For i = 2 To wsData.Cells(wsData.Rows.Count, "A").End(xIUp).row
If wsData.Cells(i, "J").value = SRIDLbI.Caption Then
'If wsData.Cells(i, "I").value = "Y" Then
' Retrieve the Product ID for the sale

ProductID = wsData.Cells(i, "G").value

' Lookup the Product details from the Product Master sheet
Dim productRow As Long
On Error Resume Next

productRow = Application.WorksheetFunction.Match(ProductID,
wsProductMaster.Range("A:A"), 0)

On Error GoTo O

If productRow > 0 Then

ProductName = wsProductMaster.Cells(productRow,
"B").value ' Product Name

ProductValue = wsData.Cells(i, "E").value ' Product Value
Else

ProductName = "N/A" ' Product not found

ProductValue =0
End If

" Update the product-wise total sales in the dictionary

If Not ProductSalesDict.Exists(ProductName) Then
ProductSalesDict(ProductName) = 0

End If

ProductSalesDict(ProductName) =
ProductSalesDict(ProductName) + ProductValue

' Calculate and display total sales and other values as needed
'End If
End If

Next i

' Display the product-wise total sales summary

Dim summaryText As String

summaryText =" Product-wise Total Sales for " & SRNameLbl.Caption
& """ & vbCrLf & vbCrLf

For Each ProductName In ProductSalesDict.Keys

summaryText = summaryText & " " & ProductName & " : Rs." &
Format(ProductSalesDict(ProductName), "#0.00") & vbCrLf

Next ProductName

' Display the summary in the ProductSummaryLabel or another control
ProductSummaryLabel.Caption = summaryText
End Sub

This VBA code snippet appears to be part of a larger Excel macro designed
to populate a summary of product-wise sales for a particular Sales
Representative (SR). Let's break down how this code works:

Private Sub SRSalesProdPopulate()

This line defines the start of a VBA subroutine named
SRSalesProdPopulate. Subroutines in VBA are blocks of code that can be
executed when called.

Dim i As Long

Dim ProductSales As Double
Dim ProductID As String

Dim ProductName As Variant

Dim ProductValue As Double

These lines declare several variables that will be used in the code:

I is declared as a Long, which is typically used for loop counters or row
numbers.

ProductSales and ProductValue are declared as Double, which is used for
storing numeric values with decimal points.

ProductID is declared as a String, which is used for storing text.

ProductName is declared as a Variant, which can store different data types
(text, numbers, etc.).

Set wsData = ThisWorkbook.Sheets("Data")
Set wsProductMaster = ThisWorkbook.Sheets("Product_Master")

These lines set two worksheet objects, wsData and wsProductMaster, to
refer to specific worksheets in the current workbook. This allows the code to
work with data on these sheets.

ProductListBox.Clear

This line clears the ProductListBox control. It's preparing the control to
display new data. Any existing content in the ProductListBox is removed.

Dim ProductSalesDict As Object
Set ProductSalesDict = CreateObject(" Scripting.Dictionary")

These lines create a dictionary object named ProductSalesDict. This
dictionary is used to store product-wise total sales. A dictionary is a data
structure that associates keys (in this case, product names) with values (total
sales).

kkk

What is Scripting Dictionary in VBA ?

A Scripting Dictionary in VBA (Visual Basic for Applications) is a powerful
data structure that allows you to store and manipulate data in the form of key-

value pairs. It's a versatile tool for working with collections of data, and it offers
several advantages:

Key-Value Storage: Each item in a Scripting Dictionary is a pair of a unique
key and its associated value. You use the key to access the corresponding value.
This makes it easy to retrieve data based on specific criteria.

Fast Lookup: Scripting Dictionaries are optimized for quick lookups. They can
efficiently retrieve values associated with a key, even when working with large
datasets.

Dynamic Sizing: Dictionaries automatically adjust their size as you add or
remove items, so you don't need to specify the number of items in advance.

Flexibility: Values in a Scripting Dictionary can be of various data types,
including numbers, text, objects, or even other dictionaries. This flexibility
allows you to handle diverse datasets.

Here's a breakdown of how Scripting Dictionaries work:

Creating a Dictionary: To create a Scripting Dictionary, you typically use the
CreateObject function, as shown in your code:

Set ProductSalesDict = CreateObject(*'Scripting.Dictionary"")

This line creates a new instance of a Scripting Dictionary and assigns it to the
ProductSalesDict variable.

Adding Items: You can add key-value pairs to the dictionary using the Add
method:

ProductSalesDict.Add Key, Value

Key: The unique identifier for the item.

Value: The data associated with the key.

Accessing Items: To retrieve a value from the dictionary, you use the key:
Value = ProductSalesDict(Key)

Key: The key associated with the value you want to retrieve.

Value: The data associated with the key.

Checking if a Key Exists: You can check if a key exists in the dictionary using
the Exists method:

If ProductSalesDict.Exists(Key) Then * Key exists in the dictionary End If

Removing Items: To remove an item from the dictionary, you use the Remove
method:

ProductSalesDict.Remove Key

Iterating Through Keys: You can loop through all the keys in the dictionary
using a For Each loop:

For Each Key In ProductSalesDict.Keys * Access each key and its associated
value Value = ProductSalesDict(Key) Next Key

In your code snippet, ProductSalesDict is used to accumulate and store
product-wise sales data for later display. It allows you to organize this data
efficiently, making it easier to calculate and present summaries or reports.

*hkkhkkhkhkhkhkkhhkkhkkhhkkhhkhhkhkhhkhhkkihkhhkhhhhhkihkihkhhkhhhihkhhkhhkhhkhhhihkihkiikihkiik

For i = 2 To wsData.Cells(wsData.Rows.Count, "A").End(xIUp).Row

This line starts a loop that iterates through rows in the "Data" worksheet,
starting from row 2 and continuing until it reaches the last row with data in
column A.

If wsData.Cells(i, "J").Value = SRIDLbI|.Caption Then

This line checks if the value in column J of the current row matches the
caption of an object named SRIDLDbI. This appears to be a conditional check
to determine if the row corresponds to the selected Sales Representative.

ProductID = wsData.Cells(i, "G").Value

This line retrieves the product ID from column G of the current row.

Dim productRow As Long
On Error Resume Next

productRow = Application.WorksheetFunction.Match(ProductID,
wsProductMaster.Range("A:A"), 0)

On Error GoTo O

These lines attempt to find the ProductID in column A of the
"Product_Master" worksheet using the Match function. If a match is found,
the row number is stored in the productRow variable. If not, productRow
remains O.

If productRow >0 Then

ProductName = wsProductMaster.Cells(productRow, "B").Value
ProductValue = wsData.Cells(i, "E").Value Else ProductName = "N/A"
ProductValue =0

End If

This block of code checks if a matching product was found in the
"Product_Master" worksheet. If a match is found (productRow > 0), it
retrieves the product name from column B and the product value from
column E. If no match is found, it sets ProductName to "N/A" and
ProductValue to 0.

If Not ProductSalesDict.Exists(ProductName) Then
ProductSalesDict(ProductName) =0
End If

ProductSalesDict(ProductName) = ProductSalesDict(ProductName) +
ProductValue

These lines update the ProductSalesDict dictionary with the product name
as the key and the product's cumulative sales as the value. If the product
name doesn't exist in the dictionary yet, it initializes it with a value of O before
adding the current product's sales.

Dim summaryText As String

summaryText =" Product-wise Total Sales for " &
SRNameLDbl.Caption & ":" & vbCrLf & vbCrLf

For Each ProductName In ProductSalesDict.Keys summaryText =
summaryText & " " & ProductName & " : Rs." &
Format(ProductSalesDict(ProductName), "#0.00") & vbCrLf

Next ProductName

These lines create a summary text that will be displayed in the
ProductSummaryLabel or another control. It iterates through the keys
(product names) in the ProductSalesDict dictionary and formats the
summary text to include product names and their respective total sales.

ProductSummaryLabel.Caption = summaryText

This line sets the caption of the ProductSummaryLabel (or another control)
to the summaryText, effectively displaying the product-wise total sales
summary.

In summary, this code is part of a larger VBA macro designed to populate a
summary of product-wise sales for a selected Sales Representative based
on data in the "Data" and "Product_Master" worksheets. It uses a dictionary
to aggregate and store the data before displaying it in a user interface
element (likely a label or text box).

Code Analysis : (SRSalesProdPopulatel)

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

A >

I N |
Gautam Banerjee

Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

Pay by UPI
9748327614

Code Analysis : (SRSalesProdPopulatel)

Private Sub SRSalesProdPopulatel()
Dim i As Long
Dim ProductSales As Double
Dim ProductID As String
Dim ProductNamm As String

Dim ProductValue As Double
Dim TotDueValue As Double

Set wsData = ThisWorkbook.Sheets("Data")
Set wsProductMaster = ThisWorkbook.Sheets("Product_Master")

' Clear the ProductListBox or other controls where you want to display
product sales

ProductListBox.Clear

' Loop through the "Data" sheet to calculate and display product details
For i = 2 To wsData.Cells(wsData.Rows.Count, "A").End(xIUp).row
If wsData.Cells(i, "J").value = SRIDLbI.Caption Then
If wsData.Cells(i, "I").value = "N" Then
' Retrieve the Product ID for the sale

ProductID = wsData.Cells(i, "G").value

" Lookup the Product details from the Product Master sheet
Dim productRow As Long
On Error Resume Next

productRow = Application.WorksheetFunction.Match(ProductID,
wsProductMaster.Range("A:A"), 0)

On Error GoTo O

If productRow > 0 Then

ProductName = wsProductMaster.Cells(productRow,
"B").value ' Product Name

ProductValue = wsData.Cells(i, "E").value ' Product Value
TotDueValue = TotDueValue + ProductValue
Else
ProductName = "N/A" ' Product not found
ProductValue =0
End If

" Add the Product Name and Value to the ProductListBox

ProductListBox.Addltem " Product Name : " & ProductName & " |
Product Value: Rs." & Format(ProductValue, "#0.00")

' Calculate and display total sales and other values as needed

End If
End If

Next i

TotProdDues.Caption = "Following Products are unpaid as on " &
Format(Date, "dd-mmm-yyyy") & " Rs. " & Format(TotDueValue, "#0.00")

End Sub

This VBA code snippet is part of a procedure named
SRSalesProdPopulatel. It appears to be designed to populate a list
(possibly a list box) with product sales details for a specific Sales
Representative (SR) and calculate some summary information. Let's break
down how this code works:

Private Sub SRSalesProdPopulatel()

This line defines the start of a VBA subroutine named
SRSalesProdPopulatel. Subroutines in VBA are blocks of code that can be
executed when called.

Dim i As Long

Dim ProductSales As Double

Dim ProductID As String

Dim ProductName As String

Dim ProductValue As Double

Dim TotDueValue As Double

These lines declare several variables that will be used in the code:

I is declared as a Long, typically used for loop counters or row numbers.

ProductSales and ProductValue are declared as Double, used for storing
numeric values with decimal points.

ProductID is declared as a String, used for storing text.
ProductName is declared as a String, used for storing product names.

TotDueValue is declared as a Double, used to accumulate the total due value
for unpaid products.

Set wsData = ThisWorkbook.Sheets("Data")
Set wsProductMaster = ThisWorkbook.Sheets("Product_Master")

These lines set two worksheet objects, wsData and wsProductMaster, to
refer to specific worksheets in the current workbook. This allows the code to
work with data on these sheets.

ProductListBox.Clear

This line clears the ProductListBox control or any other controls where
product sales details will be displayed. It ensures that the control is empty
before adding new data.

For i = 2 To wsData.Cells(wsData.Rows.Count, "A").End(xIUp).Row

This line starts a loop that iterates through rows in the "Data" worksheet,
starting from row 2 and continuing until it reaches the last row with data in
column A.

If wsData.Cells(i, "J").Value = SRIDLbI.Caption Then

This line checks if the value in column J of the current row matches the
caption of an object named SRIDLDbI. This appears to be a conditional check
to determine if the row corresponds to the selected Sales Representative.

If wsData.Cells(i, "I").Value ="N" Then

This line checks if the value in column | of the current row is equal to "N".
This condition is used to identify unpaid products.

ProductID = wsData.Cells(i, "G").Value

This line retrieves the product ID from column G of the current row.

Dim productRow As Long
On Error Resume Next

productRow = Application.WorksheetFunction.Match(ProductID,
wsProductMaster.Range("A:A"), 0)

On Error GoTo O

These lines attempt to find the ProductID in column A of the
"Product_Master" worksheet using the Match function. If a match is found,
the row number is stored in the productRow variable. If not, productRow
remains O.

If productRow >0 Then
ProductName = wsProductMaster.Cells(productRow, "B").Value
ProductValue = wsData.Cells(i, "E").Value

TotDueValue = TotDueValue + ProductValue Else ProductName =
1 N/All

ProductValue =0
End If

This block of code checks if a matching product was found in the
"Product_Master" worksheet. If a match is found (productRow > 0), it
retrieves the product name from column B and the product value from
column E. If no match is found, it sets ProductName to "N/A" and
ProductValue to 0.

ProductListBox.AddIltem " Product Name : " & ProductName & " |
Product Value: Rs." & Format(ProductValue, "#0.00")

This line adds an item to the ProductListBox. It displays the product name
and value in a specific format.

TotProdDues.Caption = "Following Products are unpaid as on " &
Format(Date, "dd-mmm-yyyy") & " Rs. " & Format(TotDueValue,
"#0.00")

This line sets the caption of an object named TotProdDues. It appears to
display a message indicating unpaid products along with the total due value
for these products, formatted with the date.

Private Sub SRNameList_Click()
Dim selectedSRRow As Long
selectedSRRow = SRNamelList.Listindex + 1

' Get SRID and SRName based on the selected row
SRID = wsSR.Cells(selectedSRRow + 1, 1).value
SRName = wsSR.Cells(selectedSRRow + 1, 2).value

' Update labels with SR information
SRIDLbl.Caption = SRID
SRNameLbl.Caption = SRName

' Create the full path to the picture based on the SR name and folder

picturePath = "D:\VBAExcel\" & SRName & ".jpg" ' Adjust the folder path

If Dir(picturePath) <>"" Then ' Check if the picture file exists
SRImage.Picture = LoadPicture(picturePath)

Else

SRImage.Picture = LoadPicture(
End If

) ' Clear the image if no picture found

' Populate SR sales information including product sales
SRSalesPopulate

SRSalesProdPopulate

SRSalesProdPopulatel

End Sub

This VBA code is part of a procedure named SRNameList_Click, which
appears to be associated with a user interface event in Excel, likely a button
click or list selection. It is used to perform various actions when a Sales
Representative (SR) is selected from a list.

Here's a breakdown of how this code works:

Private Sub SRNameList_Click()

This line defines the start of a VBA subroutine named SRNamelList_Click.
Subroutines in VBA are blocks of code that can be executed when an
associated event occurs, in this case, when a user clicks on an item in a list
named SRNameList.

Dim selectedSRRow As Long
selectedSRRow = SRNamelList.ListIndex + 1

These lines declare a variable selectedSRRow as a Long and assign it the
value of the selected index in the SRNamelList plus 1. The Listindex property
indicates the index of the selected item in the list.

' Get SRID and SRName based on the selected row SRID =
wsSR.Cells(selectedSRRow + 1, 1).Value SRName =
wsSR.Cells(selectedSRRow + 1, 2).Value

These lines retrieve the Sales Representative's ID (SRID) and name
(SRName) from the corresponding columns in the wsSR worksheet based
on the selected row. The +1 is used because Excel row and column indices
are 1-based, while the list index is 0-based.

" Update labels with SR information SRIDLbI.Caption = SRID
SRNameLDbl.Caption = SRName

These lines update labels (SRIDLbl and SRNameLbl) with the Sales
Representative's ID and name, respectively, based on the values retrieved
in the previous step. This likely provides a visual indication of the selected
Sales Representative.

' Create the full path to the picture based on the SR name and folder
picturePath = "D:\VBAExcel\" & SRName & ".jpg"

' Adjust the folder path
If Dir(picturePath) <>"" Then

' Check if the picture file exists SRImage.Picture =
LoadPicture(picturePath) Else SRImage.Picture = LoadPicture("")

' Clear the image if no picture found End If

These lines construct a file path (picturePath) based on the Sales
Representative's name and a folder path. It assumes that pictures of Sales
Representatives are stored as JPG files in a specific folder. It then checks if
the picture file exists using the Dir function. If the file exists, it loads the
picture into an object named SRImage using the LoadPicture function. If no
picture is found, it clears the image.

' Populate SR sales information including product sales SRSalesPopulate
SRSalesProdPopulate
SRSalesProdPopulatel

These lines call three other procedures (SRSalesPopulate,
SRSalesProdPopulate, and SRSalesProdPopulatel) to populate Sales
Representative sales information, including product sales. These procedures
are likely responsible for gathering and displaying data related to the
selected Sales Representative.

In summary, the SRNameList_Click subroutine is triggered when a Sales
Representative is selected from a list. It updates labels with the Sales
Representative's information, loads a picture of the Sales Representative (if
available), and calls other procedures to populate sales-related data. This

code is part of a user interface designed to interact with and display
information about Sales Representatives in an Excel workbook.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

F

I] e 1. .
Gautam Banerjee Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

Pay by UPI
9748327614

Summary :

The above VBA code appears to be part of a larger Excel workbook with user
forms and procedures to manage Sales Representatives (SRs), their sales

data, and generate reminder letters for SRs with outstanding dues. Here's a
breakdown of the key components:

ListBoxSRPopulate Subroutine:

This subroutine populates a list box (likely named SRNameList) with the
names of Sales Representatives (SRs) from a worksheet -called
"SR_Master." It retrieves the SR names from the second column of the
"SR_Master" sheet and adds them to the list box.

SRNamelList_Click Subroutine:

This subroutine is triggered when a user clicks on an item in the SRNamelList
list box.

It retrieves the selected SR's ID and name based on the clicked item and
updates labels (SRIDLbl and SRNameLDbl) with this information.

It attempts to load an image of the selected SR based on their name from a
specific folder path.

It calls three other procedures (SRSalesPopulate, SRSalesProdPopulate,
and SRSalesProdPopulatel) to populate sales-related data.

SRSalesPopulate Subroutine:
This subroutine calculates and displays SR sales information.

It calculates total sales, total paid, and total dues for the selected SR based
on data in a worksheet named "Data." The results are displayed in labels
(SalesValuelLbl, Labell, and Label2).

SRSalesProdPopulate and SRSalesProdPopulatel Subroutines:

These subroutines calculate and display product-wise sales for the selected
SR based on data in the "Data" sheet and a "Product_Master" sheet.

SRSalesProdPopulate seems to handle paid sales, while
SRSalesProdPopulatel handles unpaid sales. Both populate a list box (likely
named ProductListBox) with product details.

GenerateReminderLetters Subroutine:

This subroutine generates reminder letters for SRs with outstanding dues.

It uses Microsoft Word (if installed) to create individualized reminder letters
for each SR.

Data for the letters is sourced from worksheets "Data,” "SR_Master," and
"Customer_Master."

The letters are based on a template ("SRDueLetterwithTable.docx") and
include details of outstanding dues for each SR.

The letters are saved in a folder called "Reminder_Letters."
UserForm_Initialize Subroutine:
This subroutine is executed when the user form initializes.

It calls ListBoxSRPopulate to populate the SRNamelList list box with SR
names.

It's important to note that this code relies on specific worksheets, labels, list
boxes, and folder paths. Make sure these elements exist and are correctly
named in your Excel workbook for this code to work as expected.
Additionally, the code uses Microsoft Word for generating reminder letters,
so you need to have Word installed on your system for that functionality to
work.

