3-Layer

Sl =5 rces
R Analysis:
:-.:...‘ e | gide Product,
ol 2 SR_ID,
o S dnd il and

T A Customer |
e — . W BT Excel Data
= Fiione Boue BPRSES I vt s Insights

Open Video : https://youtu.be/A1H5zJFcx90

Download Below Code and Paste on the Code Window :

Before paste Insert List boxes, Change Name and insert labels to display
sales figure. Watch Video First. If Line start with * meant it's Comments not
code.

Dim ws As Worksheet

Dim wsData As Worksheet
Dim wsCust As Worksheet
Dim wsSR As Worksheet
Dim ProductID As String
Dim CustID As String

Dim Srid As String


https://youtu.be/A1H5zJFcx9o

Private Sub CmdExt_Click()
Unload Me
End Sub

Private Sub CustListBox_Click()
On Error Resume Next
Dim selectedCustRow As Long

Set wsSRcust = ThisWorkbook.Sheets("Customer_Master")

selectedCustRow = CustListBox.ListIndex + 1

CustID = wsCust.Cells(selectedCustRow + 1, 1).value
CustName = wsCust.Cells(selectedCustRow + 1, 2).value
'Price = wssr.Cells(selectedRow + 1, 3).value

'‘DiscRate = wssr.Cells(selectedRow + 1, 4).value

LblCustID.Caption = CustID

LbICustName.Caption = CustName

PopulateCustSales

If Err.Number <> 0 Then
MsgBox "Error: " & Err.Description



End If
On Error GoTo O

End Sub

Private Sub ProdListBox_Click()
On Error Resume Next
Dim selectedRow As Long
Set ws = ThisWorkbook.Sheets("Product_Master")

selectedRow = ProdListBox.Listindex + 1

ProductID = ws.Cells(selectedRow + 1, 1).value
ProductName = ws.Cells(selectedRow + 1, 2).value
Price = ws.Cells(selectedRow + 1, 3).value

DiscRate = ws.Cells(selectedRow + 1, 4).value

Label7.Caption = ProductIiD

Label8.Caption = ProductName

Label9.Caption = "Rs." & Format(Price, "#0.00)")
Label10.Caption = DiscRate & "%"
Labelll.Caption = TotalSales

Label27.Caption = Label8.Caption & " Sales by :"
Label28.Caption = Label8.Caption & " Sales by :"

PopulateProdSales



If Err.Number <> 0 Then

MsgBox "Error: " & Err.Description
End If
On Error GoTo 0

End Sub

Private Sub PopulateProdSales()
Dim i As Long
Set wsData = ThisWorkbook.Sheets("Data”)
TotalSales = 0
Totalpaid =0

Totaldues =0

' Loop through the "Data" sheet and calculate total sales for the selected
Product_ID

For i = 2 To wsData.Cells(wsData.Rows.Count, "D").End(xIUp).row '
Assuming data starts from row 2

If wsData.Cells(i, "F").value = ProductID Then
If wsData.Cells(i, "H").value = "Y" Then

Totalpaid = Totalpaid + wsData.Cells(i, "D").value ' Amount (Col
D)

Else
Totaldues = Totaldues + wsData.Cells(i, "D").value
End If
End If



Next i

TotalSales = Totalpaid + Totaldues

PaidPercent =0
DuePercent = 0
PaidPercent = (Totalpaid / TotalSales) * 100
DuePercent = (Totaldues / TotalSales) * 100

' Display total sales

Labelll.Caption = "Rs." & Format(TotalSales, "#0.00")
Labell2.Caption = "Rs." & Format(Totalpaid, "#0.00")
Labell3.Caption = "Rs." & Format(Totaldues, "#0.00")
Labell16.Caption = Format(PaidPercent, "(#0") & "%)"
Labell7.Caption = Format(DuePercent, "(#0") & "%)"

End Sub

Private Sub PopulateSRSales()
Dim i As Long

Set wsData = ThisWorkbook.Sheets("Data")

TotalsrSales =0

Totalpaid =0

Totaldues =0



' Loop through the "Data" sheet and calculate total sales for the selected
Product_ID

For i = 2 To wsData.Cells(wsData.Rows.Count, "D").End(xIUp).row
If wsData.Cells(i, "I'").value = Srld Then
If wsData.Cells(i, "F").value = ProductID Then
TotalsrSales = TotalsrSales + wsData.Cells(i, "D").value
End If
End If

Next i

LblSalesValue.Caption = "Rs." & Format(TotalsrSales, "#0.00")

End Sub

Private Sub PopulateCustSales()
Dim i As Long
Set wsData = ThisWorkbook.Sheets("Data")

TotalcustSales =0
Totalpaid =0

Totaldues =0

' Loop through the "Data" sheet and calculate total sales for
' the selected Sales Cust_ID and selected Product_ID

For i = 2 To wsData.Cells(wsData.Rows.Count, "D").End(xIUp).row



If wsData.Cells(i, "A").value = CustID Then
If wsData.Cells(i, "F").value = ProductID Then
TotalcustSales = TotalcustSales + wsData.Cells(i, "D").value
End If
End If

Next i

LbICustSales.Caption = "Rs." & Format(TotalcustSales, "#0.00")

End Sub

Private Sub SRListBox_Click()
On Error Resume Next
Dim selectedSRRow As Long
Set wsSR = ThisWorkbook.Sheets("SR_Master")
selectedSRRow = SRListBox.ListIndex + 1

Srld = wsSR.Cells(selectedSRRow + 1, 1).value

srName = wsSR.Cells(selectedSRRow + 1, 2).value

LbISRID.Caption = Srld
LbISRName.Caption = srName

PopulateSRSales



If Err.Number <> 0 Then
MsgBox "Error: " & Err.Description
End If
On Error GoTo 0
End Sub

Private Sub UserForm_ Initialize()
ListpopulateProd
ListPopulateSR
ListPopulateCust

End Sub

Private Sub ListpopulateProd()

Dim lastRow As Long

Dim i As Long

' Set a reference to the "Product_Master" worksheet

Set ws = ThisWorkbook.Sheets("Product _Master")

' Find the last used row in the "Product_Master" sheet

lastRow = ws.Cells(ws.Rows.Count, "B").End(xIUp).row ' Assuming data

starts from column B

' Loop through the "Product_Master" sheet and populate the ProductList

ListBox



Fori=2 To lastRow ' Assuming the data starts from row 2

ProdListBox.Addltem ws.Cells(i, 2).value ' Product_Name (second
column)

Next i

" Initialize variables to store select'ed values
ProductID ="

ProductName ="

Price =0

DiscRate = 0

End Sub

Private Sub ListPopulateSR()

Dim lastSRRow As Long
Dim i As Long

' Set a reference to the "SR_Master" worksheet

Set wsSR = ThisWorkbook.Sheets("SR_Master")

' Find the last used row in the "SR_Master" sheet

lastSRRow = wsSR.Cells(wsSR.Rows.Count, "A").End(xIUp).row '
Assuming data starts from column B



' Loop through the "SR_Master" sheet and populate the ProductList
ListBox

Fori=2 To lastSRRow ' Assuming the data starts from row 2

SRListBox.AddIltem wsSR.Cells(i, 2).value ' SR_Name (second
column)

Next i

" Initialize variables to store select'ed values
Srid=""

srName =

End Sub

Private Sub ListPopulateCust()

Dim lastCustRow As Long

Dim j As Long

' Set a reference to the "Customer_Master" worksheet

Set wsCust = ThisWorkbook.Sheets("Customer_Master")

' Find the last used row in the "Customer_Master" sheet

lastCustRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xIUp).row '
Assuming data starts from column A

' Loop through the "Customer_Master" sheet and populate the Customer
ListBox



For j =2 To lastCustRow ' Assuming the data starts from row 2

CustListBox.AddItem wsCust.Cells(j, 2).value ' Customer_Name
(second column)

Next j

" Initialize variables to store select'ed values
CustiD ="

CustName =

End Sub

Here are some definition : (Below code not for Copy and paste)

Definition the below command :
Private Sub UserForm_Initialize()
ListpopulateProd

ListPopulateSR
ListPopulateCust

End Sub

The code you provided is part of a UserForm in Excel VBA and specifically
relates to the UserForm_Initialize event handler. Here's the definition and
explanation:

Private Sub UserForm_ Initialize()

This line marks the beginning of a subroutine (procedure) in VBA code that
Is associated with the Initialize event of a UserForm. The Private keyword



indicates that this subroutine is accessible only within the module in which it
Is defined, and it is not accessible from other modules.

ListpopulateProd

This is a VBA function or subroutine call. It's calling a subroutine or function
named ListpopulateProd. The purpose of this call is to execute the code
within the ListpopulateProd subroutine or function. The absence of
parentheses indicates that it's not passing any arguments to the subroutine.

ListPopulateSR

Similar to the previous line, this is another subroutine or function call, and it's
calling a subroutine named ListPopulateSR. It's used to execute the code
within the ListPopulateSR subroutine or function.

ListPopulateCust

Again, this is a subroutine or function call, and it's calling a subroutine named
ListPopulateCust. Like the previous calls, it's used to execute the code within
the ListPopulateCust subroutine or function.

Overall, the UserForm_Initialize event handler is being used to initialize or
set up the UserForm when it is loaded or opened. It accomplishes this by
calling three separate subroutines or functions (ListpopulateProd,
ListPopulateSR, and ListPopulateCust) to populate or configure elements
within the UserForm. These subroutines likely contain code to load data, set
properties, or perform other tasks necessary to initialize the UserForm.

Private Sub ProdListBox_Click()
On Error Resume Next
Dim selectedRow As Long
Set ws = ThisWorkbook.Sheets("Product_Master")

selectedRow = ProdListBox.Listindex + 1

ProductID = ws.Cells(selectedRow + 1, 1).value

ProductName = ws.Cells(selectedRow + 1, 2).value



Price = ws.Cells(selectedRow + 1, 3).value

DiscRate = ws.Cells(selectedRow + 1, 4).value

Label7.Caption = ProductIlD

Label8.Caption = ProductName

Label9.Caption = "Rs." & Format(Price, "#0.00)")
Label10.Caption = DiscRate & "%"
Labelll.Caption = TotalSales

Label27.Caption = Label8.Caption & " Sales by :"
Label28.Caption = Label8.Caption & " Sales by :"

PopulateProdSales

If Err.Number <> 0 Then

MsgBox "Error: " & Err.Description
End If
On Error GoTo 0

End Sub

The above code is a VBA subroutine associated with the Click event of a
ListBox control named ProdListBox in an Excel UserForm. It appears to
handle the interaction when a user clicks on an item in the ProdListBox.
Here's a description of what this code does:

When a user clicks on an item in the ProdListBox, this event handler is
triggered.



It retrieves the selected row index from the ListBox (selectedRow) and then
retrieves data from the "Product_Master" worksheet based on that index.
The data includes Product ID, Product Name, Price, and Discount Rate.

The retrieved data is then displayed in various labels within the UserForm,
such as Label7, Label8, Label9, Labell0, Labelll, Label27, and Label28.

It calls a subroutine named PopulateProdSales, which appears to be
responsible for populating some information related to product sales.

Error handling is used to capture and display any errors that might occur
during the process.

Overall, this code is designed to update the UserForm with information about
a selected product from the "Product_Master" worksheet when an item in the
ProdListBox is clicked.

Description Same as above for SRListBox_Click and CustListBox_Click

Private Sub PopulateProdSales()
Dim i As Long
Set wsData = ThisWorkbook.Sheets("Data")
TotalSales = 0
Totalpaid =0

Totaldues =0

' Loop through the "Data" sheet and calculate total sales for the selected
Product_ID

For i = 2 To wsData.Cells(wsData.Rows.Count, "D").End(xlUp).row
Assuming data starts from row 2

If wsData.Cells(i, "F").value = ProductID Then

If wsData.Cells(i, "H").value = "Y" Then



Totalpaid = Totalpaid + wsData.Cells(i, "D").value * Amount (Col
D)

Else
Totaldues = Totaldues + wsData.Cells(i, "D").value
End If
End If
Next i

TotalSales = Totalpaid + Totaldues

PaidPercent =0
DuePercent = 0
PaidPercent = (Totalpaid / TotalSales) * 100
DuePercent = (Totaldues / TotalSales) * 100

' Display total sales

Labelll.Caption = "Rs." & Format(TotalSales, "#0.00")
Labell2.Caption = "Rs." & Format(Totalpaid, "#0.00")
Labell3.Caption = "Rs." & Format(Totaldues, "#0.00")
Labell16.Caption = Format(PaidPercent, "(#0") & "%)"
Labell7.Caption = Format(DuePercent, "(#0") & "%)"

End Sub

The provided code is a VBA subroutine named PopulateProdSales. This
subroutine appears to calculate and display various sales-related information
based on data from the "Data" worksheet, with a focus on a selected
ProductID. Here's an explanation of what this code does:



This subroutine calculates various sales-related metrics for a selected
ProductIlD based on data from the "Data" worksheet. It calculates the total
sales, total amount paid (Totalpaid), and total dues (Totaldues) for the
selected product.

It also calculates the percentage of total sales that is paid (PaidPercent) and
the percentage that is due (DuePercent).

These calculated values are then displayed in various labels within the
UserForm (Labelll, Labell2, Labell3, Labell6, and Label17).

The data for the calculations is obtained by looping through the "Data" sheet
and checking for rows where the ProductlD matches the selected product.
Depending on whether the payment status is marked as "Y," the amount is
added to either Totalpaid or Totaldues.

Overall, this code populates the UserForm with sales-related information
based on the selected product from the "Data" sheet and calculates and
displays totals and percentages related to sales and payments.

Dim ws As Worksheet

Dim wsData As Worksheet
Dim wsCust As Worksheet
Dim wsSR As Worksheet
Dim ProductID As String
Dim CustID As String

Dim Srid As String

Private Sub CmdExt_Click()
Unload Me
End Sub



The provided code snippet declares several variables and defines a
subroutine associated with a UserForm in Excel VBA. Here's an explanation
of the code:

Variable Declarations:

ws, wsData, wsCust, and wsSR are variables that will represent Excel
worksheets. These variables are declared at the module level, making them
accessible to all procedures within the module.

ProductID, CustID, and Srld are variables that will store string values.
Subroutine:

Private Sub CmdExt_Click(): This line marks the beginning of a subroutine
(procedure) named CmdExt_Click. This subroutine is associated with a
control named CmdExt and is executed when the control is clicked.

Subroutine Body:

Unload Me: This line of code unloads (closes) the UserForm associated with
the current instance, which is achieved by calling Unload Me. This action
effectively closes the UserForm when the "CmdExt" control (e.g., a button)
Is clicked.

Overall, the code you provided declares variables for worksheets and string
values and defines a subroutine that closes (unloads) the UserForm when a
specific control (likely a button) is clicked. The worksheets (ws, wsData,
wsCust, wsSR) and string variables (ProductID, CustID, Srld) can be used
within other procedures to store and manipulate data related to the
UserForm.



Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

Pay by UPI
9748327614




