Explanation of the Savelnvoice VBA Code!

A B c J 3 F G H | J

1 INVOICE

2 Gautam Mobile Stores

3 fi Esplanade, Kolkata, West Bengal

4 GST : 19SCFGBXXXX12X

5 Invoice No. 2024-250011 Invoice Da 21-03-2025

3

7 Customer ID Go1 Customer State: West Bengal

s Customer Name: GHI Mobiles Customer GST : 19WESTB1234K12S

3 |Customer Addres 222 East Street G Mobile No. 7

10 City & PIN : Kolkata 700001 (b E-Mail: ghi il.com

1

Sl.No. Pro'c[i)ucl Product Name Qulanli Rate Di;counl GST Rate AnFn‘ounl

2 {1 ate s.

3 1 |PADT Apple iPhone 13 2Pcs| 25000.00 0} 18] 50000
" 2 |PM01 Motorola Moto G Stylus 3Pes 11450.00) 0} 18 34350
% 3 |POO1 OrnePlus 9 Pro 10 Pesj 8500.00} 5] 12 85000
® 4 |PO03 OnePlus Nord 2 5Pecs| 12250.00 5] 12 61250)
7 5 |PRO1 Realme GT Neo 2 15 Pes| 9000.00} 5] 12 135000f
18 6 |PRO2 Realme X3 Pro 6 Pes 9500.00) 5 2 57000)
19 7 |PSO1 Samsung Galaxy S21Ultra 4 Pes| 16500.00) 10] 18] 66000]
20 8 |PS02 Samsung Galaxy 452 1Pcs| 14600.00) 10] 18] 14600}
2l 4 y 4 4 4
2l 4 I'—I y 4 4 4

23 Gross Amount 503200
24 CNNo.: 1542 Less : Discount 5. 338250 16913 16913
25 | Total Quantity v 46 Pes Less : Discount 10 164350) 16435} 16495}
26 Despachedon: 25-03-2025 Total Discount 33408 469792,
27 | Transporter : Calcutta Transport Co.| Rate |Taxabldg CGST SGST IGST

28 Freightto Pay Rs.: 550 127 |338250| 20295 20295 40530
23 187% 164950 | 14845.5 14845.5 29691
30 Net Invoice Amount 35.40,073
Ell

22 Bupees Five Lacs Forty Thousand Seventy Three Only

k<]

34 | Owr Autherised Sales Rep.

35 SR2 Dibyendu Chakraborty

£
37 _Tewms and Condifiens: Gautam Banerjee Ranijit Mandol

I Fe heuld be made befe

s | £ Fpmonts 7 O asovzues Checked by Cashier
38 |2 Goods must be Relturn within seven days from date of Receipt
0 | R Any disputes shall be the Jaws of Kolkate Jurisdickion
4
2
4 Lontact us: Mobile No. S74E3XXXXN,
44 Yisitus - s Hgincoml wixsite comiindex Emeil- gincem. 2 £

Add New Invoice Save Invoice Print Preview Save as Pdf

Explanation of the Savelnvoice VBA Code

Sub Savelnvoice()
Dim wslnvoice As Worksheet, wsBillsFile As Worksheet, wsSalesFile As Worksheet
Dim wsProduct As Worksheet
Dim i As Long, BillRow As Long, SalesRow As Long, ProductRow As Long
Dim InvoiceNo As String, lastinvoiceNo As String, newlnvoiceNo As String
Dim lastRow As Long, serialNumber As Integer
Dim duplicateCheck As Range
Dim tot_Qty As Double, amt_Disc As Double, Amt_Taxable As Double, Amt_GST As Double
Dim custGSTIN As String, invoiceDate As Date, finYear As String, totallnvoiceAmount As Double
Dim rng As Range, cell As Range
Dim hasProducts As Boolean
Dim backupPath As String
Dim ProductlID As String, StockIN As Double, StockOUT As Double, StockinHand As Double

' Error handling setup
On Error GoTo ErrorHandler

" Initialize worksheet references with validation
If Not InitializeWorksheets(wslInvoice, wsBillsFile, wsSalesFile) Then Exit Sub

' Validate invoice date
invoiceDate = wslnvoice.Range("H5").Value
If Not ValidatelnvoiceDate(invoiceDate, wsinvoice) Then Exit Sub

' Check if products exist in invoice
If Not InvoiceHasProducts(wslnvoice) Then
MsgBox "Cannot save invoice with no products. Please add at least one product.”, vbExclamation,
"No Products"
Exit Sub
End If

' Generate invoice number

finYear = GetFinancialYear(invoiceDate)

InvoiceNo = GeneratelnvoiceNumber(wsBillsFile, finYear, invoiceDate)
wslnvoice.Range("C5").Value = InvoiceNo

' Check for duplicate invoice number

If InvoiceNumberExists(wsBillsFile, InvoiceNo) Then
MsgBox "Invoice Number already exists in BillsFile!", vbExclamation, "Error"
Exit Sub

End If

' Find next empty rows in destination sheets
BillRow = wsBillsFile.Cells(wsBillsFile.Rows.Count, 1).End(xIUp).Row + 1
SalesRow = wsSalesFile.Cells(wsSalesFile.Rows.Count, 1).End(xIUp).Row + 1

' Process each product line in the invoice
i=13
Do While wslnvoice.Cells(i, 2).Value <> "" Or wslnvoice.Cells(i, 3).Value <>
If wslnvoice.Cells(i, 2).Value <> "" Or wslnvoice.Cells(i, 3).Value <> "" Then
' Save to BillsFile

SaveToBillsFile wsBillsFile, BillRow, wslnvoice, i, InvoiceNo, invoiceDate, finYear,
totallnvoiceAmount

' Save to Product sheet if Product ID exists
If wsInvoice.Cells(i, 2).Value <> "" Then
ProductID = wslnvoice.Cells(i, 2).Value
Set wsProduct = GetProductSheet(ProductID)
ProductRow = wsProduct.Cells(wsProduct.Rows.Count, 1).End(xIUp).Row + 1

' Calculate stock values

StockOUT = wslnvoice.Cells(i, 6).Value

StockIN =0

StockinHand = GetPreviousStocklnHand(wsProduct, ProductRow)

' Save to Product sheet
SaveToProductSheet wsProduct, ProductRow, wslnvoice, i, InvoiceNo, invoiceDate, finYear,
ProductID, StockIN, StockOUT, StocklnHand

BillRow = BillRow + 1
End If
End If
i=i+1
Loop

' Save summary to SalesFile
SaveToSalesFile wsSalesFile, SalesRow, wslnvoice, InvoiceNo, invoiceDate, finYear

' Post-save operations
PostSaveOperations wsinvoice

' Create backup
CreateBackup

MsgBox "Invoice saved successfully!", vbinformation, "Success"

Exit Sub

ErrorHandler:
MsgBox "Error " & Err.Number & ": " & Err.Description & vbCrLf & "Source: " & Err.Source, vbCritical,

"Error"

Err.Clear
End Sub

This VBA subroutine is designed to save invoice data from a worksheet to multiple
destination worksheets in an Excel workbook. Here's a detailed breakdown of what it
does:

Main Components

1. Variable Declarations:
o Declares worksheet objects for source and destination sheets
o Declares variables for row counters, invoice numbers, dates, financial year,
and stock quantities
o Declares variables for tracking totals (quantity, discount, taxable amount,
GST)
2. Error Handling:
o Sets up an error handler to catch and display any runtime errors

Key Operations

1. Worksheet Initialization:
o Calls InitializéWorksheets to set references to the invoice, bills file, and sales
file worksheets
o Exits if initialization fails
2. Validation Checks:
o Validates the invoice date using ValidatelnvoiceDate
o Checks if the invoice contains any products using InveiceHasProducts
o Exits if any validation fails
3. Invoice Number Generation:
o Determines the financial year from the invoice date
o Generates a new invoice number using GeneratelnvoiceNumber
o Checks for duplicate invoice numbers using InvoiceNumberEXxists
4. Data Processing:

o Finds the next empty rows in the BillsFile and SalesFile worksheets
o Loops through each product line in the invoice (starting from row 13)
o For each product:

= Saves to BillsFile using SaveToBillsFile
= If a Product ID exists, gets the corresponding product sheet
using GetProductSheet
= Calculates stock values (StockOUT from invoice, StockIN as 0, and
gets previous StockinHand)
= Saves to Product sheet using SaveToProductSheet
5. Summary Save:
o Saves invoice summary to SalesFile using SaveToSalesFile
6. Post-Save Operations:
o Performs cleanup/reset operations on the invoice sheet
using PostSaveOperations
o Creates a backup using CreateBackup
o Displays success message

1. Core Invoice Processing

Name Type Purpose

Main routine to save invoice data to multiple sheets (BillsFile,

Savelnvoice Sub
Product sheets, SalesFile)

Updates Ul after saving (disables Save button, enables Add New,

PostSaveOperations Sub
colors tab green)
CreateBackup Sub Saves timestamped backup copy in "\Backups" folder
2. Validation Functions
Purpose Returns

Checks if required sheets ("BillsFile", "SalesFile") exist Boolean

=
)
3
(1}

Ensures date is within £5 days of today Boolean
Checks if invoice has at least one product line Boolean
Verifies if invoice number already exists in BillsFile Boolean

3. Financial Year & Numbering

Name Purpose Example Output

Calculates financial year (April-March) "2023-24"

Name Purpose Example Output

GeneratelnvoiceNumber Creates sequential invoice number (YYYY-YY/000X) "2023-24/0005"

4. Data Saving Routines

Name Saves To Key Features
A Detailed line items, tax calculations
SaveTobilFil BilsFile
(CGST/SGST/IGST)
_ Product-specific Stock updates (IN/OUT/In Hand), transaction
sheets history
_ SalesFile Consolidated invoice summary for reporting

5. Product Inventory Helpers

Name Purpose Notes
_ Finds/Creates product-specific Auto-creates with headers if
sheet missing

_ Retrieves last stock balance Returns O for new products

Key Features

1. Modular Design: Uses several helper functions (shown by the capitalized
function names) to break down complex operations.

2. Data Validation: Ensures data integrity through multiple validation checks before
processing.

3. Comprehensive Saving: Saves data to multiple destinations (BillsFile, Product
sheets, SalesFile) for different reporting needs.

4. Stock Management: Tracks stock movements by updating product-specific
worksheets.

5. Financial Year Handling: Incorporates financial year awareness in invoice
numbering.

This code appears to be part of a larger inventory and billing system, designed to
maintain accurate records across multiple interconnected worksheets.

Here's an explanation of each variables:

Dim wsinvoice As Worksheet, wsBillsFile As Worksheet, wsSalesFile As Worksheet
Dim wsProduct As Worksheet
Dim i As Long, BillRow As Long, SalesRow As Long, ProductRow As Long
Dim InvoiceNo As String, lastinvoiceNo As String, newlnvoiceNo As String
Dim lastRow As Long, serialNumber As Integer
Dim duplicateCheck As Range
Dim tot_Qty As Double, amt_Disc As Double, Amt_Taxable As Double, Amt_GST As Double
Dim custGSTIN As String, invoiceDate As Date, finYear As String, totallnvoiceAmount As Double
Dim rng As Range, cell As Range
Dim hasProducts As Boolean
Dim backupPath As String
Dim ProductID As String, StockIN As Double, StockOUT As Double, StockinHand As Double

Worksheet Variables
wslnvoice As Worksheet

Represents a worksheet object for the "Invoice" sheet where invoice data is stored or generated.
wsBillsFile As Worksheet

Represents a worksheet object for the "BillsFile" sheet, likely containing billing-related data.
wsSalesFile As Worksheet

Represents a worksheet object for the "SalesFile" sheet, likely containing sales transaction records.
wsProduct As Worksheet

Represents a worksheet object for the "Product" sheet, which contains product details, stock levels, etc.

Loop & Row Counter Variables

i As Long

A loop counter, typically used in For loops to iterate through rows or columns.
BillRow As Long

Keeps track of the current row number in the "BillsFile" worksheet.
SalesRow As Long

Keeps track of the current row number in the "SalesFile" worksheet.
ProductRow As Long

Keeps track of the current row number in the "Product" worksheet.
lastRow As Long

Stores the last used row number in a worksheet.

serialNumber As Integer

Used to assign a serial number (e.g., for line items in an invoice).

Invoice Number Variables

InvoiceNo As String

Holds the current invoice number being processed.

lastinvoiceNo As String

Stores the last generated invoice number (used for incrementing to the next number).

newlnvoiceNo As String
Stores the newly generated invoice number.

Range & Cell Variables
duplicateCheck As Range
A range variable used to check if an invoice number already exists (duplicate check).

rng As Range
A generic range variable, used for looping through cells.

cell As Range
Represents a single cell within a loop (e.g., For Each cell In rng).

Financial & Quantity Variables

tot_Qty As Double

Stores the total quantity of items sold (allows decimal values, e.g., 2.5 kg).
amt_Disc As Double

Stores the total discount amount applied to an invoice.
Amt_Taxable As Double

Stores the taxable amount before GST (Goods and Services Tax).
Amt_GST As Double

Stores the GST amount calculated on the taxable amount.
totalinvoiceAmount As Double

Stores the final invoice amount after discounts and taxes.

Customer & Invoice Details

custGSTIN As String

Stores the customer's GST Identification Number (GSTIN).
invoiceDate As Date

Stores the date of the invoice.

finYear As String

Stores the financial year (e.g., "2023-24") for record-keeping.

Product & Stock Management

ProductID As String

Stores the unique identifier for a product (e.g., "PRD001").

StockIN As Double

Tracks the quantity of stock received (allows decimal values).
StockOUT As Double

Tracks the quantity of stock sold or dispatched.

StockinHand As Double

Calculates the remaining stock (StockinHand = StockIN - StockOUT).

Boolean & Path Variables
hasProducts As Boolean
A flag (True/False) to check if there are products listed in an invoice.

backupPath As String
Stores the file path where backups (e.g., invoice copies) are saved.

Summary

These variables are used for:

Worksheet handling (wsInvoice, wsBillsFile, etc.)
Looping & row tracking (i, BillRow, lastRow, etc.)
Invoice numbering (InvoiceNo, newlInvoiceNo, etc.)
Financial calculations (tot_Qty, Amt_GST, etc.)

Stock management (ProductID, StockinHand, etc.)

Data validation & checks (duplicateCheck, hasProducts)

Error Handling

On Error GoTo ErrorHandler

If any error occurs during execution, the code jumps to the ErrorHandler section which
displays:

e Error number
e Error description
e Error source

Explanation of
the InitializeWorksheets Function

Private Function InitializeWorksheets(ByRef wsinvoice As Worksheet, ByRef wsBillsFile As Worksheet,
ByRef wsSalesFile As Worksheet) As Boolean

On Error Resume Next

Set wslnvoice = ThisWorkbook.Sheets("Invoice")

Set wsBillsFile = ThisWorkbook.Sheets("BillsFile")

Set wsSalesFile = ThisWorkbook.Sheets("SalesFile")

On Error GoTo O

If wsBillsFile Is Nothing Or wsSalesFile Is Nothing Then
MsgBox "Required worksheets (BillsFile or SalesFile) are missing!", vbCritical, "Error"
InitializeWorksheets = False

Else
InitializeWorksheets = True

End If

End Function

This is a private helper function that initializes references to three important
worksheets in the Excel workbook. Here's a detailed breakdown:

The keyword ByRe £ stands for "By Reference”, which means that the function receives
a reference to the original variable (worksheet objects in this case) rather than a copy of it.

Purpose

The function attempts to set worksheet object references for:

1.
2.
3.

wslnvoice - The worksheet where invoice data is entered
wsBillsFile - The worksheet that stores detailed bill records
wsSalesFile - The worksheet that stores sales summaries

How It Works

1.

Error Handling Setup:
On Error Resume Next

o Temporarily suppresses errors (so if a sheet doesn't exist, it won't crash)
Setting Worksheet References:

Set wslnvoice = ThisWorkbook.Sheets("Invoice")
Set wsBillsFile = ThisWorkbook.Sheets("BillsFile™)
Set wsSalesFile = ThisWorkbook.Sheets(*SalesFile™)

o Attempts to assign each worksheet object to its corresponding sheet name
Restoring Normal Error Handling:

On Error GoTo 0

o Turns normal error handling back on
Validation Check:

If wsBillsFile Is Nothing Or wsSalesFile Is Nothing Then

o Checks if either BillsFile or SalesFile failed to initialize (are Nothing)
o Notice it doesn't check wsinvoice - suggesting these two are mandatory
while Invoice sheet might be optional
Error Handling:

MsgBox "Required worksheets (BillsFile or SalesFile) are missing!", vbCritical, "Error"
InitializeWorksheets = False

o Shows an error message if required sheets are missing
o Returns False to indicate failure

Success Case:

Else

InitializeWorksheets = True

End If

o Returns True if both required sheets were found

Key Points

o ByRef Parameters: The worksheet references are passed ByRef (by reference), so
the function can modify the original variables passed to it.
o Selective Validation: Only checks for BillsFile and SalesFile, implying:

o These are absolutely required for the system to work
o The Invoice sheet might be optional or its absence handled elsewhere
e Error Handling Approach: Uses On Error Resume Next to gracefully handle missing
sheets rather than crashing.
o Boolean Return: Returns True/False to indicate success/failure, allowing the calling
code to decide what to do next.

Typical Usage

This function would be called at the start of a procedure to ensure all required
worksheets are available before proceeding with operations.

Explanation of
the ValidatelnvoiceDate Function

Private Function ValidatelnvoiceDate(invoiceDate As Date, wsinvoice As Worksheet) As Boolean
If invoiceDate < Date - 5 Or invoiceDate > Date + 5 Then
MsgBox "Invalid Invoice Date! Please select a date within 5 days from today.", vbExclamation,
"Invalid Date"
wslnvoice.Range("H5").Value = Date
ValidatelnvoiceDate = False
Else
ValidatelnvoiceDate = True
End If
End Function

This is a private validation function that checks whether an invoice date falls within an
acceptable range. Here's what it does:

Purpose

The function validates that the invoice date is:

e Not more than 5 days in the past
e Not more than 5 days in the future
from the current date (today).

Parameters

« invoiceDate: The date to be validated (passed by value)
« wslnvoice: The worksheet containing the invoice (to update the date if invalid)

Return Value

e Returns True if the date is valid
e Returns False if the date is invalid

Code Breakdown

1. Date Validation Check:

If invoiceDate < Date - 5 Or invoiceDate > Date + 5 Then

o Date is a VBA function that returns the current system date
o Checks if the invoice date is either:

= Earlier than 5 days ago (Date - 5)
= Later than 5 days from now (Date + 5)
2. Invalid Date Handling:

MsgBox "Invalid Invoice Date! Please select a date within 5 days from today."”, vbExclamation, “Invalid D
ate"

wslnvoice.Range("H5").Value = Date
ValidatelnvoiceDate = False

o Shows an error message to the user
o Automatically resets the date in cell H5 to today's date
o Returns False indicating validation failed

3. Valid Date Case:

Else
ValidatelnvoiceDate = True
End If

o Returns True if the date is within the acceptable range

Key Features

1. Business Rule Enforcement:

o Implements a business rule that invoices must be dated within +5 days of
the current date
o This might be for accounting or reporting purposes
2. User-Friendly Feedback:

o Provides clear feedback about what dates are acceptable
o Automatically corrects invalid dates to today's date
3. Worksheet Integration:

o Directly modifies the worksheet (cell H5) when invalid dates are found
o This ensures the invoice always has a valid date before proceeding

Typical Usage

This function would be called before processing an invoice to ensure the date is valid.
The calling code would check the return value to decide whether to proceed:

If Not ValidatelnvoiceDate(invoiceDate, wsinvoice) Then Exit Sub

Why This Validation?

The £5 day restriction likely serves several purposes:

e Prevents accidental entry of dates far in past/future

e Maintains accounting period integrity

e Ensures timely invoicing practices

o Matches business requirements for reporting periods

Explanation of
the InvoiceHasProducts Function

Private Function InvoiceHasProducts(wslnvoice As Worksheet) As Boolean
Dim i As Long
i=13
Do While wslnvoice.Cells(i, 2).Value <>
InvoiceHasProducts = True
Exit Function
Loop
InvoiceHasProducts = False
End Function

nn nn

Or wslnvoice.Cells(i, 3).Value <>

This function checks whether an invoice worksheet contains any products. Here's a
detailed breakdown:

Purpose

The function determines if there are any products listed in the invoice by scanning rows
starting from row 13.

Parameters

« wslnvoice: The worksheet containing the invoice data to be checked

Return Value

e Returns True if at least one product is found (in column B or C)
e Returns False if no products are found

Code Breakdown

1. Initialization:

Dim i As Long
i=13

o Sets up a row counter starting at row 13 (typical starting row for invoice
line items)
2. Loop Through Rows:
Do While wslnvoice.Cells(i, 2).Value <> "" Or wslnvoice.Cells(i, 3).Value <> ""
o Checks columns B (2) and C (3) of each row
o Continues while either column has content (product ID in B or description
in C)
o The loop condition checks for non-empty cells
3. Positive Case Handling:

InvoiceHasProducts = True
Exit Function

o If any row has content, immediately:

= Sets return value to True
= Exits the function (no need to check further rows)
4. Negative Case Handling:
o Only reached if the loop completes without finding any products
o Returns False indicating no products found

Key Features

1. Efficient Design:

o Exits immediately upon finding the first product
o Doesn't unnecessarily scan the entire worksheet
2. Flexible Validation:

o Checks both product ID (column B) and description (column C)
o This accommodates invoices that might use either field
3. Row Starting Point:

o Begins at row 13, suggesting:

= Rows 1-12 contain invoice headers/static information
= Product lines start at row 13

Typical Usage

This function would be called before processing/saving an invoice to ensure it contains
at least one product line:

If Not InvoiceHasProducts(wslnvoice) Then
MsgBox "Invoice must contain at least one product!”, vbExclamation

Exit Sub
End If

Why This Validation?

Prevents:

e Saving empty invoices

o Processing errors downstream

e Accounting discrepancies from blank invoices
e Wasting system resources on invalid invoices

Explanation of
the GeneratelnvoiceNumber Function

Private Function GeneratelnvoiceNumber(wsBillsFile As Worksheet, finYear As String, invoiceDate As
Date) As String

Dim lastRow As Long, serialNumber As Integer

Dim lastinvoiceNo As String

Dim rng As Range, cell As Range

lastRow = wsBillsFile.Cells(wsBillsFile.Rows.Count, 4).End(xIUp).Row
lastinvoiceNo = wsBillsFile.Cells(lastRow, 4).Value
serialNumber =0

If lastRow >= 2 Then
Set rng = wsBillsFile.Range("D2:D" & lastRow)
For Each cell In rng
If Left(cell.Value, 7) = finYear Then
lastinvoiceNo = cell.Value
End If
Next cell
If lastinvoiceNo <> "" Then serialNumber = Val(Right(lastInvoiceNo, 4))
End If

serialNumber = serialNumber + 1
GeneratelnvoiceNumber = finYear & "/" & Format(serialNumber, "0000")
End Function

This function creates a new sequential invoice number based on the financial year and

previous invoice numbers in the system.

Purpose
Generates a unique invoice number in the format: YYYY-YY/000X where:

e YYYY-YY is the financial year (e.g., 2023-24)
e 000X is a 4-digit sequential number

Parameters

« wsBillsFile: Worksheet containing existing invoices
o finYear: Financial year string (e.g., "2023-24")
 invoiceDate: Date of the invoice (not directly used in this function)

Return Value

Returns a new invoice number as a string.

Code Breakdown

1. Initial Setup
Dim lastRow As Long, serialNumber As Integer

Dim lastInvoiceNo As String
Dim rng As Range, cell As Range

Declares variables for:

e Tracking the last used row

e Storing the serial number component
e Holding the last invoice number

« Range objects for searching

2. Find Last Invoice
lastRow = wsBillsFile.Cells(wsBillsFile.Rows.Count, 4).End(xIUp).Row

lastInvoiceNo = wsBillsFile.Cells(lastRow, 4).Value
e Finds the last used row in column D (where invoice numbers are stored)
e Gets the invoice number from that row

3. Initialize Serial Number

serialNumber = 0

Default starting value if no previous invoices exist

4. Process Existing Invoices

If lastRow >= 2 Then
Set rng = wsBillsFile.Range("D2:D" & lastRow)
For Each cell In rng
If Left(cell.Value, 7) = finYear Then
lastinvoiceNo = cell.Value
End If
Next cell
If lastinvoiceNo <> "" Then serialNumber = Val(Right(lastinvoiceNo, 4))
End If

o Checks if there are any existing invoices (row 2+)

e Searches all invoice numbers in column D

e Finds the highest number for the current financial year

o Extracts the 4-digit serial number from matching invoices

5. Generate New Number
serialNumber = serialNumber + 1

GeneratelnvoiceNumber = finYear & "/" & Format(serialNumber, "0000")
o Increments the serial number
e Formats the number with leading zeros (e.g., 1 becomes "0001")
o Combines with financial year to create final invoice number

Key Features

1. Financial Year Tracking:

o Numbers are specific to each financial year

o Each year's numbering starts fresh (0001)
2. Robust Searching:

o Doesn't assume the last row has the highest number

o Scans all invoices to find the highest number for the current financial year
3. Consistent Formatting:

o Uses 4-digit serial numbers (0001-9999)

o Standardized format (YYYY-YY/000X)
4. Error Handling:

o Works even with empty worksheet (starts at 0001)
o Handles cases where no matching financial year exists

Example Output
For financial year "2023-24":

o First invoice: "2023-24/0001"
e Next invoice: “2023-24/0002"
e [In 2024-25: "2024-25/0001" (resets counter)

Typical Usage

Called when creating a new invoice to ensure unique, sequential numbering according
to financial year.

Explanation of
the InvoiceNumberExists Function

Private Function InvoiceNumberExists(wsBillsFile As Worksheet, InvoiceNo As String) As Boolean
Dim duplicateCheck As Range
Set duplicateCheck = wsBillsFile.Columns(4).Find(InvoiceNo, LooklIn:=xIValues, LookAt:=xIWhole)
InvoiceNumberExists = Not (duplicateCheck Is Nothing)

End Function

This function checks whether a given invoice number already exists in the BillsFile
worksheet.

Purpose

To prevent duplicate invoice numbers by verifying if a proposed invoice number is
already present in the system.

Parameters

« wsBillsFile: The worksheet containing all existing invoice records
e InvoiceNo: The invoice number to check for duplicates

Return Value

e Returns True if the invoice number already exists
e Returns False if the invoice number is unique

Code Breakdown

1. Variable Declaration

Dim duplicateCheck As Range

Declares a Range object to store the result of the search.

2. Searching for the Invoice Number
Set duplicateCheck = wsBillsFile.Columns(4).Find(InvoiceNo, LooklIn:=xIValues, LookAt:=xIWhole)

This line performs several important operations:

e wsBillsFile.Columns(4): Searches in column D (4th column) where invoice numbers
are stored
e .Find() method parameters:

o InvoiceNo: The number to search for
o LookIn:=xIValues: Searches in cell values (not formulas or formats)
o LookAt:=xIWhole: Looks for exact whole-cell matches (not partial matches)

3. Determining the Result

InvoiceNumberExists = Not (duplicateCheck Is Nothing)

e If the invoice number is found, duplicateCheck contains the cell reference (not
Nothing)
e If not found, duplicateCheck is Nothing
o The Not operator converts this to a Boolean result:
o Found — True (exists)
o Not found — False (doesn't exist)

Key Features

1. Efficient Search:

o Uses Excel's native Find method which is optimized for quick searching
o Searches only the relevant column (D/4)
2. Exact Matching:

o xIWhole ensures only exact matches are considered
o Prevents false positives from similar numbers
3. Simple Boolean Return:
o Clean true/false interface for calling code
o Easy to use in conditional statements
4. Minimalist Design:

o Does one thing well (existence check)
o No unnecessary complexity

Typical Usage

Called before saving a new invoice to ensure number uniqueness:

If InvoiceNumberExists(wsBillsFile, newlnvoiceNo) Then
MsgBox "This invoice number already exists!", vbExclamation

Exit Sub
End If

Why This Matters

e Maintains data integrity by preventing duplicates
o Critical for accounting and audit trails

e Ensures each invoice has a unique identifier

« Prevents confusion in reporting and tracking

Here's a detailed explanation of
the SaveToBillsFile subroutine:

Private Sub SaveToBillsFile(wsBillsFile As Worksheet, BillRow As Long, wslnvoice As Worksheet, i As
Long, InvoiceNo As String, invoiceDate As Date, finYear As String, ByRef totallnvoiceAmount As Double)
Dim amt_Disc As Double, Amt_Taxable As Double, Amt_GST As Double
Dim custGSTIN As String

With wsBillsFile
" Invoice & Customer Details
.Cells(BillRow, 1).Value = wslnvoice.Range("C7").Value 'Customer_ID
.Cells(BillRow, 2).Value = wsinvoice.Range("C8").Value 'Customer_Name
.Cells(BillRow, 3).Value = wsinvoice.Range("17").Value 'State

.Cells(BillRow, 4).Value = InvoiceNo " Invoice_No
.Cells(BillRow, 5).Value = invoiceDate "Invoice_Date
.Cells(BillRow, 6).Value = "SL" "Invoice_Type

' Product Details

.Cells(BillRow, 7).Value = wsinvoice.Cells(i, 2).Value 'Product_ID
.Cells(BillRow, 8).Value = wsinvoice.Cells(i, 3).Value 'Product Name
.Cells(BillRow, 9).Value = wsinvoice.Cells(i, 6).Value 'Quantity
.Cells(BillRow, 10).Value = wsinvoice.Cells(i, 7).Value ' Product_Rate
.Cells(BillRow, 11).Value = wslnvoice.Cells(i, 10).Value ' Product_Value
.Cells(BillRow, 12).Value = wslnvoice.Cells(i, 8).Value ' Discount rate

' Discount Calculation
amt_Disc = Round(wslnvoice.Cells(i, 10).Value * wsinvoice.Cells(i, 8).Value / 100, 0)
.Cells(BillRow, 13).Value = amt_Disc ' Discount Amount

' Taxable Amount Calculation
Amt_Taxable = wslnvoice.Cells(i, 10).Value - amt_Disc
.Cells(BillRow, 14).Value = Amt_Taxable ' Taxable Amount

.Cells(BillRow, 15).Value = wslnvoice.Cells(i, 9).Value ' GST rate

' GST Calculation
Amt_GST = Round(Amt_Taxable * wslnvoice.Cells(i, 9).Value / 100, 0)
custGSTIN = wsInvoice.Range("18").Value

' Check if the customer GSTIN indicates a West Bengal customer
If Left(Trim(custGSTIN), 2) = "19" Then
" Intrastate: Apply CGST and SGST

.Cells(BillRow, 16).Value = Amt_GST ' Total GST Amount (optional)
.Cells(BillRow, 17).Value = Amt_GST/2 ' CGST Amount
.Cells(BillRow, 18).Value = Amt_GST /2 'SGST Amount

.Cells(BillRow, 19).Value =0 "1GST Amount (not applicable)
Else
" Interstate: Apply IGST only
.Cells(BillRow, 16).Value =0 ' GST Amount (if you want to leave it blank)
.Cells(BillRow, 17).Value =0 ' CGST Amount
.Cells(BillRow, 18).Value =0 'SGST Amount
.Cells(BillRow, 19).Value = Amt_GST "1GST Amount
End If

" Invoice Amount Calculation
.Cells(BillRow, 20).Value = Amt_Taxable + Amt_GST ' Invoice Amount
totallnvoiceAmount = totallnvoiceAmount + .Cells(BillRow, 20).Value

' Sales Rep & Transport Details

.Cells(BillRow, 23).Value = wslnvoice.Range("C24").Value ' CN No
.Cells(BillRow, 24).Value = wsinvoice.Range("C25").Value ' No of Item
.Cells(BillRow, 25).Value = wslnvoice.Range("C26").Value ' Despatched on
.Cells(BillRow, 26).Value = wslnvoice.Range("C27").Value ' Transporter name
.Cells(BillRow, 27).Value = wslnvoice.Range("C28").Value ' Freight to Pay
.Cells(BillRow, 21).Value = wslnvoice.Range("A35").Value ' SalesRep_ID
.Cells(BillRow, 22).Value = wsInvoice.Range("B35").Value ' SalesRep_Name

' Date-related fields
.Cells(BillRow, 28).Value = Format(invoiceDate, "mmm") ' Month
.Cells(BillRow, 30).Value = "Q" & (Int((Month(invoiceDate) - 1) / 3) + 1) ' Quarter
.Cells(BillRow, 31).Value = Year(invoiceDate) ' Year
.Cells(BillRow, 29).Value = lIf(Day(invoiceDate) <= 15, "1F", "2F") ' Fortnight
.Cells(BillRow, 32).Value = finYear ' Financial Year
End With
End Sub

Purpose

This subroutine saves individual line items from an invoice to a master BillsFile
worksheet, including all relevant product details, taxes, and customer information.

Parameters
o wsBillsFile: Target worksheet where bill records are stored
e BillRow: Row number where to insert the new record
e wslnvoice: Source invoice worksheet
e i: Current row number in the invoice being processed

e InvoiceNo: Generated invoice number

 invoiceDate: Date of the invoice

« finYear: Financial year for the invoice

« totallnvoiceAmount (ByRef): Running total that gets updated with each line item

Detailed Breakdown
1. Customer and Invoice Header Information:

o Copies customer ID, name, and state from fixed cells in the invoice (C7, C8,
17)
o Stores the generated invoice number and date
o Sets invoice type as "SL" (meaning "Sales")
2. Product Details:
o Copies product ID, name, quantity, rate, and value from the current invoice
row
o Stores discount percentage from column 8 of the invoice
3. Financial Calculations:
o Calculates discount amount (product value x discount %)
o Computes taxable amount (product value - discount)
o Calculates GST based on the taxable amount and GST rate
o Handles different tax scenarios:

= For West Bengal customers (GSTIN starts with "19"):

= Splits GST equally as CGST and SGST
= For other states:

= Applies full amount as IGST
4. Invoice Amounts:

o Calculates final line item amount (taxable + GST)
o Updates the running total invoice amount (passed ByRef)
5. Logistics Information:

o Stores consignment note (CN) details

o Records transportation information

o Saves sales representative details

6. Date Analytics:

o Extracts and stores various date components:
= Month name (e.g., "Jan")
= Fortnight (1F for 1st-15th, 2F for 16th-end)
= Quarter (Q1-Q4)
= Calendar year
= Financial year

Key Features
1. Comprehensive Data Capture:

o Captures all essential invoice elements in one operation
o Handles both product details and header information
2. Tax Calculation Logic:

o Automatically determines intra-state (CGST+SGST) vs inter-state (IGST)
taxation
o Uses GSTIN prefix (19 for West Bengal) to determine tax treatment
3. Financial Tracking:

o Maintains a running total of the invoice amount
o Preserves all calculation components (gross, discount, taxable, taxes)
4. Reporting-Friendly Fields:

o Creates derived date fields (month, quarter, fortnight) for easy reporting
o Stores both calendar and financial year
5. Structured Organization:

o Groups related fields together in the target worksheet
o Uses consistent column positions for specific data types

Typical Flow

This would be called for each product line in an invoice, with:

 BillRow incrementing for each line item
e irepresenting the current invoice row being processed
« totallnvoiceAmount accumulating the invoice total

The ByRef totallnvoiceAmount allows the calling procedure to track the complete invoice
value across multiple line items.

Error Handling

Note this subroutine doesn't include explicit error handling, suggesting it relies on the
calling procedure's error handling (as seen in the parent Savelnvoice procedure).

Explanation of the GetProductSheet Function

Private Function GetProductSheet(ProductID As String) As Worksheet
On Error Resume Next
Set GetProductSheet = ThisWorkbook.Sheets(ProductID)

On Error GoTo O

If GetProductSheet Is Nothing Then
Set GetProductSheet =
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))
GetProductSheet.Name = ProductID

' Create Product Sheet Headers
With GetProductSheet
.Range("A1:P1").Value = Array("Invoice_No", "Invoice_Date", "Invoice_Type", "Customer_ID",
"Customer_Name", _
"Product_ID", "Product_Name", "Product_Rate", "Product_Value", "GST_Rate", _
"Month", "FAYear", "Pieces", "Stock IN", "Stock_OUT", "Stock _In_Hand")
End With
End If
End Function

This function retrieves or creates a dedicated worksheet for tracking a specific product's
inventory and sales history.

Purpose

To provide a product-specific worksheet for:

1. Maintaining inventory records (stock in/out)
2. Tracking sales history
3. Storing product transaction details

Parameters

e ProductlD: The unique identifier for the product (used as sheet name)

Return Value

Returns a Worksheet object for the specified product (either existing or newly created)

Code Breakdown

1. Error Handling Setup
On Error Resume Next

e Temporarily suppresses errors (for when sheet doesn't exist)

2. Attempt to Get Existing Sheet

Set GetProductSheet = ThisWorkbook.Sheets(ProductID)

e Tries to find a worksheet with the exact ProductID as its name

3. Restore Error Handling

On Error GoTo 0

e Returns to normal error handling behavior

4. Create New Sheet if Needed
If GetProductSheet Is Nothing Then

e Checks if no existing sheet was found

5. Sheet Creation Process
Set GetProductSheet = ThisWorkbook.Sheets. Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))

GetProductSheet.Name = ProductID
e Adds new sheet at the end of all existing sheets
e Names it with the ProductID

6. Initialize Sheet Headers

With GetProductSheet
.Range("Al:P1").Value = Array("Invoice_No", "Invoice_Date", "Invoice_Type", "Customer_ID", "Customer_Na

me",

"Product_ID", "Product_Name", "Product_Rate", "Product_Value", "GST_Rate", _
"Month", "FAYear", "Pieces"”, "Stock _IN", "Stock_OUT", "Stock_In_Hand")

e Sets up 16 standardized column headers (A-P)
o Creates a complete tracking structure for the product

Key Features

1. Lazy Initialization:

o Only creates the sheet when first needed
o Avoids creating unused product sheets
2. Standardized Structure:

o Ensures all product sheets have identical column layouts
o Enables consistent reporting across products
3. Inventory Tracking:

o Dedicated columns for stock movements (IN/OUT/In Hand)
o Ties stock changes to specific invoices
4. Sales History:

o Records all relevant invoice details
o Maintains pricing and tax information

5. Financial Tracking:

o Includes financial year (FAYear) for reporting
o Captures month for period-based analysis

Why This Matters

o Centralizes all product-specific data

« Enables accurate stock tracking

e Supports product performance analysis

e Maintains complete audit trail for each product
« Facilitates inventory reconciliation

The function exemplifies a robust inventory management pattern where each product
automatically gets its own tracking worksheet when first encountered in the system.

Explanation of
the GetPreviousStocklnHand Function

Private Function GetPreviousStockinHand(wsProduct As Worksheet, ProductRow As Long) As Double
If ProductRow > 2 Then
GetPreviousStockinHand = wsProduct.Cells(ProductRow - 1, 16).Value
Else
GetPreviousStockinHand = 0
End If
End Function

This function retrieves the previous stock balance for a product from its dedicated
worksheet.

Purpose

To get the last recorded "Stock In Hand" value for a product before adding new
transactions.

Parameters

e wsProduct: The product-specific worksheet
e ProductRow: The next available row where new data will be written

Return Value
Returns the previous stock quantity as a Double:

e The value from column P (16) of the previous row if data exists
e 0 if this is the first entry for the product

Code Breakdown

1. Check for Existing Data

If ProductRow > 2 Then

o Checks if we're past the header row (row 1) and first data row (row 2)
e« Row numbers:

o Row 1: Column headers
o Row 2: First transaction
o Row 3+: Subsequent transactions

2. Get Previous Stock Value

GetPreviousStockinHand = wsProduct.Cells(ProductRow - 1, 16).Value
o If previous data exists (ProductRow > 2):
o Gets value from column P (16) which contains "Stock_In_Hand"
o Uses the row before the current insertion point (ProductRow - 1)

3. Default for New Products
Else

GetPreviousStocklnHand = 0
End If

e If no previous transactions exist (ProductRow < 2):

o Returns 0 as the starting stock quantity
o This would be the case for a brand new product

Key Features

1. Inventory Continuity:

o Maintains a running balance of stock quantities

o Each new transaction starts from the previous balance
2. Error Prevention:

o Handles the case of new products gracefully

o Won't fail if no previous data exists
3. Column Reference:

o Column 16 (P) is hardcoded as the "Stock_In_Hand" column
o Matches the header setup in GetProductSheet
4. Simple Logic:
o Straightforward row position check
o Clear default value for new products

Typical Usage

Used when adding new stock transactions to calculate current stock:

Dim currentStock As Double

currentStock = GetPreviousStocklnHand(wsProduct, nextRow) + newStockln - newStockOut

Why This Matters

o Essential for accurate inventory tracking

e Ensures each transaction properly updates from the last known quantity
e Provides reliable starting point (0) for new products

« Maintains data integrity in the stock management system

This function works in conjunction with the product worksheet structure created
by GetProductSheet, where column P (16) consistently holds the running stock balance.

Here's a detailed explanation of
the SaveToProductSheet subroutine:

Private Sub SaveToProductSheet(wsProduct As Worksheet, ProductRow As Long, wslnvoice As
Worksheet, i As Long, InvoiceNo As String, invoiceDate As Date, finYear As String, ProductID As String, _
StockIN As Double, StockOUT As Double, StockinHand As Double)
With wsProduct

.Cells(ProductRow, 1).Value = InvoiceNo
.Cells(ProductRow, 2).Value = invoiceDate
.Cells(ProductRow, 3).Value = "SL"
.Cells(ProductRow, 4).Value = wsinvoice.Range("C7").Value ' Customer_ID
.Cells(ProductRow, 5).Value = wsinvoice.Range("C8").Value ' Customer_Name
.Cells(ProductRow, 6).Value = ProductID
.Cells(ProductRow, 7).Value = wslnvoice.Cells(i, 3).Value ' Product_ Name
.Cells(ProductRow, 8).Value = wslnvoice.Cells(i, 7).Value ' Product_Rate
.Cells(ProductRow, 9).Value = wsinvoice.Cells(i, 10).Value ' Product_Value
.Cells(ProductRow, 10).Value = wslnvoice.Cells(i, 9).Value ' GST_Rate

.Cells(ProductRow, 11).Value = Format(invoiceDate, "mmm") ' Month
.Cells(ProductRow, 12).Value = finYear ' Financial Year
.Cells(ProductRow, 13).Value = "Pieces"
.Cells(ProductRow, 14).Value = StockIN
.Cells(ProductRow, 15).Value = StockOUT
.Cells(ProductRow, 16).Value = StockinHand + StockIN - StockOUT
End With
End Sub

Purpose

This subroutine records a product transaction to a product-specific worksheet, updating
all relevant details including stock movements.

Parameters

e wsProduct: The target product worksheet

e ProductRow: Row number where to insert the record
« wslnvoice: Source invoice worksheet

e i: Current row in invoice being processed

¢ InvoiceNo, invoiceDate, finYear: Invoice identification

e ProductlD: The product being processed

e StockIN, StockOUT: Quantity movements

e StockinHand: Previous stock balance

Detailed Breakdown

1. Invoice Information:

.Cells(ProductRow, 1).Value = InvoiceNo
.Cells(ProductRow, 2).Value = invoiceDate

.Cells(ProductRow, 3).Value = "SL" 'Sales
o Records basic invoice identifiers
"SL" likely stands for "Sales"
2. Customer Details:

.Cells(ProductRow, 4).Value = wslnvoice.Range("C7").Value ' Customer_ID
.Cells(ProductRow, 5).Value = wslnvoice.Range(""C8").Value ' Customer_Name

o Copies customer information from fixed invoice cells
3. Product Information:

.Cells(ProductRow, 6).Value = ProductID
.Cells(ProductRow, 7).Value = wslnvoice.Cells(i, 3).Value ' Product Name

.Cells(ProductRow, 8).Value = wslnvoice.Cells(i, 7).Value ' Product_Rate
.Cells(ProductRow, 9).Value = wslnvoice.Cells(i, 10).Value ' Product_Value
.Cells(ProductRow, 10).Value = wsinvoice.Cells(i, 9).Value ' GST_ Rate

o Records all product details from the invoice line
o Includes pricing and tax rate information
4. Temporal Information:

.Cells(ProductRow, 11).Value = Format(invoiceDate, "mmm") ' Month

.Cells(ProductRow, 12).Value = finYear ' Financial Year
.Cells(ProductRow, 13).Value = "Pieces" ' Unit of measure

o Stores reporting-friendly date information
o Standardizes unit of measure as "Pieces"
5. Stock Movement Tracking:

.Cells(ProductRow, 14).Value = StockIN
.Cells(ProductRow, 15).Value = StockOUT

.Cells(ProductRow, 16).Value = StocklnHand + StockIN - StockOUT
o Records incoming and outgoing quantities
o Calculates new stock balance by:

1. Starting with previous balance (StockinHand)
2. Adding any incoming stock (StockIN)
3. Subtracting outgoing stock (StockOUT)

Key Features
1. Complete Transaction Record:

o Captures all aspects of the product transaction
o Links to original invoice and customer
2. Inventory Management:

o Maintains accurate stock movement records
o Calculates running stock balance automatically
3. Standardized Structure:

o Consistent with headers created in GetProductSheet
o Columns match exactly the header array from that function
4. Reporting-Ready Data:

o Includes financial year and month for period analysis
o Standard unit of measure for consistency
5. Financial Tracking:

o Preserves pricing and tax information
o Maintains product value data

Typical Flow
This would be called for each product line in an invoice, with:

e StockIN typically O for sales invoices
e StockOUT containing the sold quantity
e StockinHand coming from GetPreviousStockinHand

Column Mapping

The columns correspond to the headers created in GetProductSheet:

1. Invoice_No

2. Invoice_Date
3. Invoice_Type
4. Customer_ID
5. Customer_Name
6. Product_ID

7. Product_ Name
8. Product_Rate
9. Product_Value
10. GST_Rate

11. Month

12. FAYear

13. Pieces

14. Stock_IN

15. Stock_OUT
16. Stock_In_Hand

This subroutine is a critical component of the inventory management system, ensuring
each product's worksheet contains complete historical data for all transactions.

Explanation of
the GetPreviousStockinHand Subroutine

Private Function GetPreviousStockinHand(wsProduct As Worksheet, ProductRow As Long) As Double
If ProductRow >2 Then
GetPreviousStockinHand = wsProduct.Cells(ProductRow - 1, 16).Value
Else
GetPreviousStocklnHand =0
End If
End Function

This is a VBA (Visual Basic for Applications) function that calculates the "previous stock

in hand" for a product in an Excel worksheet. Let me break it down:

Function Purpose:

The function GetPreviousStockInHand retrieves the stock value from the previous row

for a given product, or returns 0 if there is no previous row.

Parameters:

. wsProduct As Worksheet - The worksheet object where the product data is stored

ProductRow As Long - The current row number of the product you're checking

Function Logic:

If ProductRow > 2 Then - Checks if the current row is greater than row 2
If true (meaning there is at least one row above the current one), it:

Gets the value from column 16 (column P) of the previous row (ProductRow - 1)
Assigns this value to the function's return value

. Else - If the current row is 2 or less (meaning no previous product row exists)

Returns 0 as the function's value

Technical Details:

The function returns a &¥ (decimal number) data type
Column 16 refers to column P in Excel (A=1, B=2,..., P=16)
Row numbers start at 1 in Excel, but the data likely starts at row 2 (assuming row 1 has

headers)
Typical Use Case:
This would likely be used in inventory management to:

Get the ending stock from the previous period
Use it as the starting stock for the current period

Handle the first entry (row 2) by assuming no previous stock (0)

For example, if called for row 3, it would return the value from P2. If called for row 2, it

would return O.

Explanation of
the SaveToSalesFile Subroutine

Private Sub SaveToSalesFile(wsSalesFile As Worksheet, SalesRow As Long, wsInvoice As Worksheet,
InvoiceNo As String, invoiceDate As Date, finYear As String)
With wsSalesFile
.Cells(SalesRow, 1).Value = wslnvoice.Range("C7").Value 'Customer_ID
.Cells(SalesRow, 2).Value = wslnvoice.Range("C8").Value 'Customer_Name
.Cells(SalesRow, 3).Value = wsinvoice.Range("17").Value 'State

.Cells(SalesRow, 4).Value = InvoiceNo "Invoice_No
.Cells(SalesRow, 5).Value = invoiceDate " Invoice_Date
.Cells(SalesRow, 6).Value = "SL" " Invoice_Type

.Cells(SalesRow, 15).Value = wsinvoice.Range("J30").Value ' Total Invoice Amount

' Sales details

.Cells(SalesRow, 7).Value = wslnvoice.Range("C25").Value 'Total Quantity

.Cells(SalesRow, 8).Value = wslnvoice.Range("J23").Value 'Gross Sales

.Cells(SalesRow, 9).Value = wslnvoice.Range("126").Value 'Disc Amount

.Cells(SalesRow, 10).Value = wslnvoice.Range("J26").Value ' Taxable Sales

.Cells(SalesRow, 11).Value = wslnvoice.Range("J28").Value + wslnvoice.Range("J29").Value ' GST
Amount

.Cells(SalesRow, 12).Value = wslnvoice.Range("G28").Value + wslnvoice.Range("G29").Value ' CGST
Amount

.Cells(SalesRow, 13).Value = wslnvoice.Range("H28").Value + wsInvoice.Range("H29").Value ' SGST
Amount

.Cells(SalesRow, 14).Value = wslnvoice.Range("I128").Value + wsinvoice.Range("129").Value ' IGST
Amount

.Cells(SalesRow, 15).Value = wslnvoice.Range("J30").Value ' Invoice Amount

' Sales rep and transport details
.Cells(SalesRow, 16).Value = wsinvoice.Range("A35").Value 'SalesRep_ID
.Cells(SalesRow, 17).Value = wslnvoice.Range("B35").Value 'SalesRep_Name

.Cells(SalesRow, 18).Value = wslnvoice.Range("C24").Value
.Cells(SalesRow, 19).Value = wslnvoice.Range("C26").Value
.Cells(SalesRow, 20).Value = wslnvoice.Range("C27").Value
.Cells(SalesRow, 21).Value = wslnvoice.Range("C28").Value

' Date-related fields

'"CN No.

'CN Date

' Transporter Name
' Freight

.Cells(SalesRow, 22).Value = Format(invoiceDate, "mmm") ' Month
.Cells(SalesRow, 24).Value = "Q" & (Int((Month(invoiceDate) - 1) / 3) + 1) ' Quarter

.Cells(SalesRow, 25).Value = Year(invoiceDate) ' Year

.Cells(SalesRow, 23).Value = lIf(Day(invoiceDate) <= 15, "1F", "2F") ' Fortnight

.Cells(SalesRow, 26).Value = finYear ' Financial Year
End With
End Sub

This subroutine saves summarized invoice data to a master sales tracking worksheet,
consolidating all financial and logistical information for reporting and analysis purposes.

Purpose

To create a comprehensive sales record that:

Tracks all customer invoices

Records logistics information

Hwn =

Parameters

e wsSalesFile: Target sales summary worksheet
e SalesRow: Row number for the new record

e wslnvoice: Source invoice worksheet
 InvoiceNo: Unique invoice identifier
 invoiceDate: Date of invoice

 finYear: Financial year for reporting

Detailed Breakdown

1. Customer and Invoice Information

.Cells(SalesRow, 1).Value = wsInvoice.Range("C7").Value 'Customer_ID
.Cells(SalesRow, 2).Value = wsinvoice.Range("C8").Value ' Customer_Name

.Cells(SalesRow, 3).Value = wsinvoice.Range("17").Value ' State

Maintains financial details (gross sales, discounts, taxes)

Enables period-based reporting (monthly, quarterly, etc.)

.Cells(SalesRow, 4).Value = InvoiceNo " Invoice_No

.Cells(SalesRow, 5).Value = invoiceDate " Invoice_Date

.Cells(SalesRow, 6).Value = "SL" " Invoice_Type (Sales)
o Captures key identifiers linking the sale to a customer
e Marks all records as "SL" (Sales) type

2. Financial Information

' Core amounts

.Cells(SalesRow, 8).Value = wsInvoice.Range("J23").Value ' Gross Sales
.Cells(SalesRow, 9).Value = wsInvoice.Range("126").Value ' Discount Amount
.Cells(SalesRow, 10).Value = wslnvoice.Range("J26").Value ' Taxable Sales

' Tax breakdown

.Cells(SalesRow, 11).Value = wslnvoice.Range("J28").Value + wslnvoice.Range("'J29").Value ' Total GST
.Cells(SalesRow, 12).Value = wslnvoice.Range("G28").Value + wsinvoice.Range("G29").Value ' CGST
.Cells(SalesRow, 13).Value = wslnvoice.Range(*"H28").Value + wslnvoice.Range("H29").Value ' SGST
.Cells(SalesRow, 14).Value = wslnvoice.Range("128").Value + wslnvoice.Range("'129").Value ' IGST

' Final amounts
.Cells(SalesRow, 7).Value = wsinvoice.Range("C25").Value ' Total Quantity
.Cells(SalesRow, 15).Value = wslnvoice.Range(*J30").Value ' Net Invoice Amount

» Maintains complete audit trail of financial calculations:

o From gross sales — discounts — taxable amount — taxes — net amount
e Preserves tax component details (CGST/SGST for local, IGST for interstate)

3. Logistics and Operational Data

' Sales personnel

.Cells(SalesRow, 16).Value = wslnvoice.Range("A35").Value ' SalesRep_ID
.Cells(SalesRow, 17).Value = wslnvoice.Range("B35").Value 'SalesRep_Name

' Transportation details

.Cells(SalesRow, 18).Value = wslnvoice.Range("C24").Value 'CN No. (Consignment Note)
.Cells(SalesRow, 19).Value = wslnvoice.Range("C26").Value 'CN Date

.Cells(SalesRow, 20).Value = wslnvoice.Range("C27").Value ' Transporter Name
.Cells(SalesRow, 21).Value = wslnvoice.Range("C28").Value 'Freight Charges

e Tracks responsibility (sales rep)
e Records shipping information for logistics tracking

4. Reporting Period Fields

' Date analytics

.Cells(SalesRow, 22).Value = Format(invoiceDate, "mmm") ' Month (e.g., "Jan")
.Cells(SalesRow, 23).Value = IIf(Day(invoiceDate) <= 15, "1F", "2F") ' Fortnight

.Cells(SalesRow, 24).Value = "Q" & (Int((Month(invoiceDate) - 1) / 3) + 1) ' Quarter
.Cells(SalesRow, 25).Value = Year(invoiceDate) ' Calendar Year
.Cells(SalesRow, 26).Value = finYear ' Financial Year

e Creates multiple time dimensions for reporting:

o Month (text)

o Fortnight (1F/2F)

o Quarter (Q1-Q4)

o Both calendar and financial year

Key Features

1. Comprehensive Financial Tracking:

o Maintains complete sales calculation pipeline
o Preserves all tax components separately
2. Dual-Period Reporting:

o Supports both calendar year and financial year reporting
o Multiple time granularities (month, quarter, fortnight)
3. Operational Visibility:
o Links sales to responsible personnel
o Tracks shipping details
4. Data Integrity:

o All amounts pulled from calculated cells in invoice
o No recalculation in this routine
5. Structured Column Layout:

o Logical grouping of related fields
o Consistent positioning across all records

Typical Usage

Called once per invoice (after all line items are processed) to create a summary record in
the sales master file.

Why This Matters

o Creates the foundation for sales analysis and reporting

« Enables performance tracking by period, salesperson, region, etc.
« Provides data for financial reporting and tax compliance

e Maintains complete audit trail of all sales transactions

This subroutine serves as the central consolidation point for all sales data in what
appears to be a robust inventory and accounting system.

Explanation of
the CreateBackup Subroutine

Private Sub CreateBackup()

Dim backupPath As String
backupPath = ThisWorkbook.Path & "\Backups\"

' Create backups folder if it doesn't exist

If Dir(backupPath, vbDirectory) ="" Then
MkDir backupPath

End If

' Save backup with timestamp
ThisWorkbook.SaveCopyAs backupPath & "Backup_ " & Format(Now(), "yyyymmdd_hhmmss") &
" xlsm"

End Sub

This subroutine creates a timestamped backup copy of the current workbook in a
dedicated "Backups" folder.

Purpose

To automatically preserve a version of the workbook:
1. Before or after critical operations (like saving invoices)

2. With unique timestamp to prevent overwrites
3. In an organized backup location

Detailed Breakdown

1. Backup Path Setup

backupPath = ThisWorkbook.Path & "\Backups\"
o Constructs the backup folder path by:

o Getting current workbook's directory (Thisworkbook.Path)
o Appending "Backups" subfolder
e Example result: D:\Excel Project\Invoices\Backups\

2. Folder Creation
If Dir(backupPath, vbDirectory) = " Then

MKkDir backupPath
End If

o Checks if backup folder exists using Dir function
o Creates the folder if missing using MkDir
« vhDirectory flag makes it check for folder existence

3. Saving Backup Copy

ThisWorkbook.SaveCopyAs backupPath & "Backup " & Format(Now(), "yyyymmdd _hhmmss") & ".xlsm"
e Creates filename with components:

"Backup_" prefix
o Current timestamp formatted as YearMonthDay_HourMinuteSecond
o .Xlsm extension for macro-enabled workbooks
e Example filename: Backup_20231215_143045.xIsm
e Uses SaveCopyAs which:

o Saves without changing the active workbook
o Doesn't break workbook references
o Preserves all VBA code

Key Features

1. Automatic Organization:

o Dedicated backup folder keeps files separated
o No manual folder setup required
2. Timestamp Protection:

o Precise to-the-second naming prevents overwrites
o Sortable date format (yyyymmdd) for easy finding
3. Non-Destructive:

o Original workbook remains active and unchanged
o Works even if workbook is read-only
4. Self-Healing:

o Creates missing folders automatically
o No error if backups folder already exists

Typical Usage
Called after successful operations like invoice saving to:
o Create recovery points

¢ Maintain audit trail
o« Enable rollback if needed

Why This Matters

o Critical for data integrity
o Provides disaster recovery

« Maintains historical versions
o Simple but effective version control

The timestamp format (yyyymmdd_hhmmess) is particularly useful because:

Files sort chronologically in Explorer

Eliminates ambiguity in backup sequencing
Works internationally (no month/day confusion)
Contains all needed temporal information

Awn =

Explanation of
the GetFinancialYear Function

"Helper function to calculate Financial Year
Function GetFinancialYear(invoiceDate As Date) As String
If Month(invoiceDate) >= 4 Then
GetFinancialYear = Year(invoiceDate) & "-" & Right(CStr(Year(invoiceDate) + 1), 2)
Else
GetFinancialYear = (Year(invoiceDate) - 1) & "-" & Right(CStr(Year(invoiceDate)), 2)
End If
End Function

This function calculates the financial year (also called fiscal year) for a given date,
following the April-March financial year convention used in many countries including
India.

Purpose

To determine the correct financial year string (e.g., "2023-24") for any given date, based
on the common April-to-March fiscal year system.

Parameters

 invoiceDate: The date for which we need to determine the financial year

Return Value

Returns a string representing the financial year in "YYYY-YY" format (e.g., "2023-24")

Detailed Breakdown

1. Financial Year Logic

The function uses this decision structure:

If Month(invoiceDate) >= 4 Then
" April-March period (current year to next year)

Else
' January-March period (previous year to current year)
End If

2. April-March Period (Month >= 4)

GetFinancial Year = Year(invoiceDate) & "-" & Right(CStr(Year(invoiceDate) + 1), 2)
o For dates April 1st or later:
o Start year = current calendar year (e.g., 2023)
o End year = next calendar year (e.g., 2024)
o Formatted as "2023-24"
e Example: June 15, 2023 — "2023-24"

3. January-March Period (Month < 4)

GetFinancial Year = (Year(invoiceDate) - 1) & "-" & Right(CStr(Year(invoiceDate)), 2)
e For dates before April 1st:

o Start year = previous calendar year (e.g., 2022)
o End year = current calendar year (e.g., 2023)
o Formatted as "2022-23"

e Example: February 10, 2023 - "2022-23"

4. String Formatting
e Right(CStr(Year), 2) extracts the last two digits of the year
e CStr() converts the year number to a string
e The hyphen "-" joins the two year parts

Key Features

1. Common Fiscal Year Convention:
o Matches the April-March financial year used in:

= India

= United Kingdom
= Canada

= Japan

= And many other countries

2. Precise Year Calculation:

o Handles the year transition at April 1st
o Correctly associates Jan-Mar dates with previous year
3. Consistent Formatting:

o Always returns 7-character string (e.g., "2023-24")
o Standard format for financial reporting
4. Efficient Implementation:

o Simple date arithmetic
o Minimal string operations

Example Outputs

e January 15, 2023 - "2022-23"

e April 5, 2023 - "2023-24"

e December 20, 2023 — "2023-24"
e March 31, 2024 — "2023-24"

e April 1,2024 - "2024-25"

Why This Matters

« Essential for financial reporting

e Required for tax calculations

e Important for accounting periods

e Used in invoice numbering (as seen in earlier functions)
e Maintains consistency across financial documents

This function is particularly important in systems that need to organize data by financial
year rather than calendar year, which is common in business and accounting
applications.

When deciding whether to use a Subroutine (Sub) or Function in VBA (or
any programming language), follow these key criteria:

1. Use a FUNCTION When:
e You need to return a value

(e.g., calculations, validations, data lookups)
Function GetFinancial Year(date As Date) As String

"Returns "YYYY-YY"

End Function

« You want to reuse logic
(e.g., tax calculations, stock updates)
Function CalculateGST(amount As Double, rate As Double) As Double

CalculateGST = amount * rate / 100
End Function

o The code is stateless
(Same input always gives same output, no side effects)

2. Use a SUBROUTINE (Sub) When:
« You perform actions without returning values

(e.g., saving data, formatting sheets, Ul updates)

Sub SaveToSalesFile()
' Writes data to a worksheet
End Sub

o The code has side effects
(e.g., modifying worksheets, creating backups)

Sub CreateBackup()
' Saves a file to disk
End Sub

e You handle events

(e.g., button clicks, workbook opens)
Sub btnSave_Click()

' Triggered by user action
End Sub

3. How to Divide Your Code
A. By Responsibility
Task Type Approach
Data Processing Functions (e.g., CalculateDiscount)
Data Saving Subs (e.g., SaveToDatabase)
Validation Functions (e.g., IsValidEmail)
Ul Updates Subs (e.g., FormatinvoiceTable)
B. By Reusability
e Functions: For logic used in multiple places
(e.g., GetProductSheet is called by both saving and reporting code)
e Subs: For one-time operations
(e.g., PostSaveOperations runs only after saving)

C. By Complexity
o Break down large procedures into smaller functions/subs:

Sub Processlnvoice()
If Not Validatelnvoice() Then Exit Sub ' Function

SavelnvoiceData()
Updatelnventory()

LogTransaction()
End Sub

4. Practical Examples from Your Code

Case Why?

GetFinancialYear — Function Returns a value based on input date
SaveToBillsFile — Sub Writes data to sheets (no return value)
InvoiceHasProducts — Function Returns True/False for validation
CreateBackup — Sub Performs an action (saving a file)

5. Pro Tips
1. Naming Conventions:

o Functions: Start with verbs (Get, Calculate, Is)
o Subs: Use action verbs (Save, Format, Run)
2. Parameter Passing:

o Use ByVal (default) for functions to avoid side effects.
o Use ByRef in subs when modifying variables.
3. Error Handling:

o Subs typically handle errors (e.g., On Error GoTo).
o Functions often propagate errors to callers.
4. State Management:

o Functions should not modify global state.
o Subs can modify worksheets/variables.

When in Doubt, Ask:
1. "Do | need a result?" — Function
2. "Am | changing something?" — Sub
3. "Will I reuse this?" — Function

This approach keeps your code clean, debuggable, and maintainable. The examples
from your invoice system demonstrate this perfectly!

&/ Instructions to Use the File:

Download the Excel file and the PDF file containing the full VBA code.

Save the Excel file as a Macro-Enabled Workbook (. x1sm format).

Open the Excel file and press Alt + F11 to open the Visual Basic for Applications (VBA) Editor.
Copy the full code from the PDF and paste it into the VBA editor.

Save the file again.

vk wnN e

6. Right-click on the ‘Save Invoice’ button and assign the macro named “Savelnvoice”.
7. Fill in the data on the Invoice sheet and click the ‘Save Invoice’ button to save it.

® If you face any issues, feel free to write in the comment box below the video!

Below is the Full Code:-
Option Explicit

Sub Savelnvoice()
Dim wsinvoice As Worksheet, wsBillsFile As Worksheet, wsSalesFile As Worksheet
Dim wsProduct As Worksheet
Dim i As Long, BillRow As Long, SalesRow As Long, ProductRow As Long
Dim InvoiceNo As String, lastinvoiceNo As String, newlnvoiceNo As String
Dim lastRow As Long, serialNumber As Integer
Dim duplicateCheck As Range
Dim tot_Qty As Double, amt_Disc As Double, Amt_Taxable As Double, Amt_GST As Double
Dim custGSTIN As String, invoiceDate As Date, finYear As String, totallnvoiceAmount As Double
Dim rng As Range, cell As Range
Dim hasProducts As Boolean
Dim backupPath As String
Dim ProductID As String, StockIN As Double, StockOUT As Double, StockinHand As Double

" Error handling setup
On Error GoTo ErrorHandler

" Initialize worksheet references with validation
If Not InitializeWorksheets(wsinvoice, wsBillsFile, wsSalesFile) Then Exit Sub

' Validate invoice date
invoiceDate = wsinvoice.Range("H5").Value
If Not ValidatelnvoiceDate(invoiceDate, wsinvoice) Then Exit Sub

' Check if products exist in invoice
If Not InvoiceHasProducts(wsinvoice) Then
MsgBox "Cannot save invoice with no products. Please add at least one product.”, vbExclamation,
"No Products"
Exit Sub
End If

' Generate invoice number

finYear = GetFinancialYear(invoiceDate)

InvoiceNo = GeneratelnvoiceNumber(wsBillsFile, finYear, invoiceDate)
wsinvoice.Range("C5").Value = InvoiceNo

' Check for duplicate invoice number

If InvoiceNumberExists(wsBillsFile, InvoiceNo) Then
MsgBox "Invoice Number already exists in BillsFile!", vbExclamation, "Error"
Exit Sub

End If

' Find next empty rows in destination sheets
BillRow = wsBillsFile.Cells(wsBillsFile.Rows.Count, 1).End(xIUp).Row + 1
SalesRow = wsSalesFile.Cells(wsSalesFile.Rows.Count, 1).End(xIUp).Row + 1

' Process each product line in the invoice
i=13
Do While wsinvoice.Cells(i, 2).Value <> "" Or wsinvoice.Cells(i, 3).Value <>
If wsinvoice.Cells(i, 2).Value <> "" Or wsinvoice.Cells(i, 3).Value <> "" Then
' Save to BillsFile
SaveToBillsFile wsBillsFile, BillRow, wsinvoice, i, InvoiceNo, invoiceDate, finYear,
totallnvoiceAmount

' Save to Product sheet if Product ID exists
If wsinvoice.Cells(i, 2).Value <> "" Then
ProductID = wsinvoice.Cells(i, 2).Value
Set wsProduct = GetProductSheet(ProductID)
ProductRow = wsProduct.Cells(wsProduct.Rows.Count, 1).End(xIUp).Row + 1

' Calculate stock values

StockOUT = wsinvoice.Cells(i, 6).Value

StockIN =0

StocklnHand = GetPreviousStockinHand(wsProduct, ProductRow)

' Save to Product sheet
SaveToProductSheet wsProduct, ProductRow, wsinvoice, i, InvoiceNo, invoiceDate, finYear,
ProductID, StockIN, StockOUT, StocklnHand

BillRow = BillRow + 1
End If
End If
i=i+1
Loop

' Save summary to SalesFile
SaveToSalesFile wsSalesFile, SalesRow, wsinvoice, InvoiceNo, invoiceDate, finYear

' Post-save operations

PostSaveOperations wsinvoice

' Create backup
CreateBackup
MsgBox "backup file Save Successfully : ", vbOKOnly, "Back-Ups"

MsgBox "Invoice saved successfully!", vbinformation, "Success"
Exit Sub

ErrorHandler:

MsgBox "Error " & Err.Number & ": " & Err.Description & vbCrLf & "Source: " & Err.Source, vbCritical,
"Error"

Err.Clear
End Sub

‘=== HELPER FUNCTIONS = =

Private Function InitializeWorksheets(ByRef wsinvoice As Worksheet, ByRef wsBillsFile As Worksheet,
ByRef wsSalesFile As Worksheet) As Boolean

On Error Resume Next

Set wsinvoice = ThisWorkbook.Sheets("Invoice")

Set wsBillsFile = ThisWorkbook.Sheets("BillsFile")

Set wsSalesFile = ThisWorkbook.Sheets("SalesFile")

On Error GoTo O

If wsBillsFile Is Nothing Or wsSalesFile Is Nothing Then
MsgBox "Required worksheets (BillsFile or SalesFile) are missing!", vbCritical, "Error"
InitializeWorksheets = False
Else
InitializeWorksheets = True
End If
End Function

Private Function ValidatelnvoiceDate(invoiceDate As Date, wsinvoice As Worksheet) As Boolean
If invoiceDate < Date - 5 Or invoiceDate > Date + 5 Then
MsgBox "Invalid Invoice Date! Please select a date within 5 days from today.", vbExclamation,
"Invalid Date"
wsinvoice.Range("H5").Value = Date
ValidatelnvoiceDate = False
Else
ValidatelnvoiceDate = True
End If
End Function

Private Function InvoiceHasProducts(wsinvoice As Worksheet) As Boolean
Dim i As Long
i=13
Do While wsinvoice.Cells(i, 2).Value <>
InvoiceHasProducts = True
Exit Function
Loop
InvoiceHasProducts = False
End Function

Or wsinvoice.Cells(i, 3).Value <>

Private Function GeneratelnvoiceNumber(wsBillsFile As Worksheet, finYear As String, invoiceDate As
Date) As String

Dim lastRow As Long, serialNumber As Integer

Dim lastinvoiceNo As String

Dim rng As Range, cell As Range

lastRow = wsBillsFile.Cells(wsBillsFile.Rows.Count, 4).End(xIUp).Row
lastinvoiceNo = wsBillsFile.Cells(lastRow, 4).Value
serialNumber =0

If lastRow >= 2 Then
Set rng = wsBillsFile.Range("D2:D" & lastRow)
For Each cell In rng
If Left(cell.Value, 7) = finYear Then
lastinvoiceNo = cell.Value
End If
Next cell
If lastInvoiceNo <>
End If

Then serialNumber = Val(Right(lastInvoiceNo, 4))

serialNumber = serialNumber + 1
GeneratelnvoiceNumber = finYear & "/" & Format(serialNumber, "0000")
End Function

Private Function InvoiceNumberExists(wsBillsFile As Worksheet, InvoiceNo As String) As Boolean
Dim duplicateCheck As Range
Set duplicateCheck = wsBillsFile.Columns(4).Find(InvoiceNo, LooklIn:=xIValues, LookAt:=xIWhole)
InvoiceNumberExists = Not (duplicateCheck Is Nothing)

End Function

Private Sub SaveToBillsFile(wsBillsFile As Worksheet, BillRow As Long, wsinvoice As Worksheet, i As
Long,

InvoiceNo As String, invoiceDate As Date, finYear As String, ByRef totallnvoiceAmount As
Double)
Dim amt_Disc As Double, Amt_Taxable As Double, Amt_GST As Double
Dim custGSTIN As String

With wsBillsFile
" Invoice & Customer Details
.Cells(BillRow, 1).Value = wsinvoice.Range("C7").Value 'Customer_ID

.Cells(BillRow, 2).Value = wsinvoice.Range("C8").Value 'Customer Name
.Cells(BillRow, 3).Value = wsinvoice.Range("l17").Value 'State
.Cells(BillRow, 4).Value = InvoiceNo " Invoice_No
.Cells(BillRow, 5).Value = invoiceDate "Invoice_Date
.Cells(BillRow, 6).Value = "SL" "Invoice_Type

' Product Details

.Cells(BillRow, 7).Value = wsinvoice.Cells(i, 2).Value 'Product_ID
.Cells(BillRow, 8).Value = wsinvoice.Cells(i, 3).Value 'Product_ Name
.Cells(BillRow, 9).Value = wsinvoice.Cells(i, 6).Value 'Quantity
.Cells(BillRow, 10).Value = wsinvoice.Cells(i, 7).Value ' Product_Rate
.Cells(BillRow, 11).Value = wsinvoice.Cells(i, 10).Value ' Product_Value
.Cells(BillRow, 12).Value = wsinvoice.Cells(i, 8).Value ' Discount rate

' Discount Calculation
amt_Disc = Round(wsinvoice.Cells(i, 10).Value * wsinvoice.Cells(i, 8).Value / 100, 0)
.Cells(BillRow, 13).Value = amt_Disc ' Discount Amount

' Taxable Amount Calculation
Amt_Taxable = wsinvoice.Cells(i, 10).Value - amt_Disc
.Cells(BillRow, 14).Value = Amt_Taxable ' Taxable Amount

.Cells(BillRow, 15).Value = wsinvoice.Cells(i, 9).Value ' GST rate

' GST Calculation
Amt_GST = Round(Amt_Taxable * wsinvoice.Cells(i, 9).Value / 100, 0)
custGSTIN = wsinvoice.Range("18").Value

' Check if the customer GSTIN indicates a West Bengal customer
If Left(Trim(custGSTIN), 2) = "19" Then
" Intrastate: Apply CGST and SGST
.Cells(BillRow, 16).Value = Amt_GST ' Total GST Amount (optional)
.Cells(BillRow, 17).Value = Amt_GST /2 ' CGST Amount
.Cells(BillRow, 18).Value = Amt_GST/2 'SGST Amount
.Cells(BillRow, 19).Value =0 "IGST Amount (not applicable)
Else

"Interstate: Apply IGST only

.Cells(BillRow, 16).Value =0 ' GST Amount (if you want to leave it blank)
.Cells(BillRow, 17).Value =0 ' CGST Amount
.Cells(BillRow, 18).Value =0 ' SGST Amount
.Cells(BillRow, 19).Value = Amt_GST "IGST Amount
End If

" Invoice Amount Calculation
.Cells(BillRow, 20).Value = Amt_Taxable + Amt_GST ' Invoice Amount
totallnvoiceAmount = totallnvoiceAmount + .Cells(BillRow, 20).Value

' Sales Rep & Transport Details

.Cells(BillRow, 23).Value = wsinvoice.Range("C24").Value ' CN No
.Cells(BillRow, 24).Value = wsinvoice.Range("C25").Value ' No of Item
.Cells(BillRow, 25).Value = wsinvoice.Range("C26").Value ' Despatched on
.Cells(BillRow, 26).Value = wsinvoice.Range("C27").Value ' Transporter name
.Cells(BillRow, 27).Value = wsinvoice.Range("C28").Value ' Freight to Pay
.Cells(BillRow, 21).Value = wsinvoice.Range("A35").Value ' SalesRep_ID
.Cells(BillRow, 22).Value = wsinvoice.Range("B35").Value ' SalesRep_Name

—_ — ~— — — —

' Date-related fields
.Cells(BillRow, 28).Value = Format(invoiceDate, "mmm") ' Month
.Cells(BillRow, 30).Value ="Q" & (Int((Month(invoiceDate) - 1) / 3) + 1) ' Quarter
.Cells(BillRow, 31).Value = Year(invoiceDate) ' Year
.Cells(BillRow, 29).Value = lIf(Day(invoiceDate) <= 15, "1F", "2F") ' Fortnight
.Cells(BillRow, 32).Value = finYear ' Financial Year
End With
End Sub

Private Function GetProductSheet(ProductID As String) As Worksheet
On Error Resume Next
Set GetProductSheet = ThisWorkbook.Sheets(ProductID)
On Error GoTo O

If GetProductSheet Is Nothing Then
Set GetProductSheet =
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))
GetProductSheet.Name = ProductID

' Create Product Sheet Headers
With GetProductSheet
.Range("A1:P1").Value = Array("Invoice_No", "Invoice_Date", "Invoice_Type", "Customer_ID",
"Customer_Name", _
"Product_ID", "Product_Name", "Product_Rate", "Product_Value", "GST_Rate", _

"Month", "FAYear", "Pieces", "Stock IN", "Stock_OUT", "Stock_In_Hand")
End With
End If
End Function

Private Function GetPreviousStockinHand(wsProduct As Worksheet, ProductRow As Long) As Double
If ProductRow > 2 Then
GetPreviousStocklnHand = wsProduct.Cells(ProductRow - 1, 16).Value
Else
GetPreviousStocklnHand = 0
End If
End Function

Private Sub SaveToProductSheet(wsProduct As Worksheet, ProductRow As Long, wsinvoice As
Worksheet, i As Long, _
InvoiceNo As String, invoiceDate As Date, finYear As String, ProductID As String, _
StockIN As Double, StockOUT As Double, StockinHand As Double)

With wsProduct
.Cells(ProductRow, 1
.Cells(ProductRow, 2
.Cells(ProductRow, 3
.Cells(ProductRow, 4
.Cells(ProductRow, 5
.Cells(ProductRow, 6
.Cells(ProductRow, 7).Value = wsinvoice.Cells(i, 3).Value ' Product_Name
.Cells(ProductRow, 8).Value = wsinvoice.Cells(i, 7).Value ' Product_Rate
.Cells(ProductRow, 9).Value = wsinvoice.Cells(i, 10).Value ' Product_Value
.Cells(ProductRow, 10).Value = wsinvoice.Cells(i, 9).Value ' GST_Rate
.Cells(ProductRow, 11).Value = Format(invoiceDate, "mmm") ' Month
.Cells(ProductRow, 12).Value = finYear ' Financial Year
.Cells(ProductRow, 13).Value = "Pieces"

.Cells(ProductRow, 14).Value = StockIN
.Cells(ProductRow, 15).Value = StockOUT
.Cells(ProductRow, 16).Value = StockinHand + StockIN - StockOUT
End With
End Sub

.Value = InvoiceNo

.Value = invoiceDate

.Value ="SL"

.Value = wsinvoice.Range("C7").Value ' Customer_ID
.Value = wsinvoice.Range("C8").Value ' Customer_Name
.Value = ProductID

_— — — — — — ~— ~—

Private Sub SaveToSalesFile(wsSalesFile As Worksheet, SalesRow As Long, wsinvoice As Worksheet, _
InvoiceNo As String, invoiceDate As Date, finYear As String)
With wsSalesFile
.Cells(SalesRow, 1).Value = wsinvoice.Range("C7").Value 'Customer_ID
.Cells(SalesRow, 2).Value = wsinvoice.Range("C8").Value 'Customer_Name
.Cells(SalesRow, 3).Value = wsinvoice.Range("l7").Value 'State
.Cells(SalesRow, 4).Value = InvoiceNo "Invoice_No

.Cells(SalesRow, 5).Value = invoiceDate "Invoice_Date
.Cells(SalesRow, 6).Value = "SL" "Invoice_Type
.Cells(SalesRow, 15).Value = wsinvoice.Range("J30").Value ' Total Invoice Amount

' Sales details

.Cells(SalesRow, 7).Value = wsinvoice.Range("C25").Value 'Total Quantity

.Cells(SalesRow, 8).Value = wsinvoice.Range("J23").Value 'Gross Sales

.Cells(SalesRow, 9).Value = wsinvoice.Range("126").Value 'Disc Amount

.Cells(SalesRow, 10).Value = wsinvoice.Range("J26").Value ' Taxable Sales

.Cells(SalesRow, 11).Value = wsinvoice.Range("J28").Value + wsinvoice.Range("J29").Value ' GST
Amount

.Cells(SalesRow, 12).Value = wsinvoice.Range("G28").Value + wsinvoice.Range("G29").Value ' CGST
Amount

.Cells(SalesRow, 13).Value = wsinvoice.Range("H28").Value + wsinvoice.Range("H29").Value ' SGST
Amount

.Cells(SalesRow, 14).Value = wsinvoice.Range("128").Value + wsinvoice.Range("129").Value ' IGST
Amount

.Cells(SalesRow, 15).Value = wsinvoice.Range("J30").Value ' Invoice Amount

' Sales rep and transport details

.Cells(SalesRow, 16).Value = wsinvoice.Range("A35").Value 'SalesRep_ID
.Cells(SalesRow, 17).Value = wsinvoice.Range("B35").Value 'SalesRep_Name
.Cells(SalesRow, 18).Value = wsinvoice.Range("C24").Value 'CN No.
.Cells(SalesRow, 19).Value = wsinvoice.Range("C26").Value 'CN Date
.Cells(SalesRow, 20).Value = wsinvoice.Range("C27").Value 'Transporter Name
.Cells(SalesRow, 21).Value = wsinvoice.Range("C28").Value 'Freight

' Date-related fields
.Cells(SalesRow, 22).Value = Format(invoiceDate, "mmm") ' Month
.Cells(SalesRow, 24).Value = "Q" & (Int((Month(invoiceDate) - 1) / 3) + 1) ' Quarter
.Cells(SalesRow, 25).Value = Year(invoiceDate) ' Year
.Cells(SalesRow, 23).Value = lIf(Day(invoiceDate) <= 15, "1F", "2F") ' Fortnight
.Cells(SalesRow, 26).Value = finYear ' Financial Year
End With
End Sub

Private Sub CreateBackup()
Dim backupPath As String
backupPath = ThisWorkbook.Path & "\Backups\"

' Create backups folder if it doesn't exist

If Dir(backupPath, vbDirectory) ="" Then
MkDir backupPath

End If

' Save backup with timestamp

ThisWorkbook.SaveCopyAs backupPath & "Backup " & Format(Now(), "yyyymmdd_hhmmss") &
" xlsm"
End Sub

" Helper function to calculate Financial Year
Function GetFinancialYear(invoiceDate As Date) As String
If Month(invoiceDate) >= 4 Then
GetFinancialYear = Year(invoiceDate) & "-" & Right(CStr(Year(invoiceDate) + 1), 2)
MsgBox "The Financial is : " & GetFinancialYear, voOKOnly, "Hey..l am Gautam"
Else
GetFinancialYear = (Year(invoiceDate) - 1) & "-" & Right(CStr(Year(invoiceDate)), 2)
MsgBox "The Financial is : " & GetFinancialYear, vbOKOnly, "Hey..I am Gautam"
End If
End Function

Gautam Banerjee for Code Station

For Donation:

Goutam Banerjee, A/c No. 569902010003571,
IFSC Code- UBIN0556998,

Union Bank of India, Barasat

E-mail: gincoml@yahoo.com

Thanks.

mailto:gincom1@yahoo.com

