Effortless Customer Data Printing:
Automate Your Workflow

Z-l-l-l-é'l'l-l-2-~-3-r-4-l-5---6-'-7-|‘8-|~9-|»lO-w-ll-wlZ---13»~<l4-'-15-I-A-l-17-l-18-

To
<Name>

<Address>
<City>-<PIN>
<State>

Subject: Confirmation of Stockiest Appointment

We hope this letter finds you well. We are pleased to inform you that your application
for becoming a stockiest with [Your Company Name] has been approved
Congratulations on being appointed as an official stockiest!

Phone Number : <Phone>
Email Address : <Email>
PAN Number 1 <PAN>
GSTIN 1 <GSTIN>

As a stockiest, you will have access to our comprehensive range of products, along
with the support of our dedicated team. We believe that your strong market presence
and expertise will greatly contribute to the success of our partnership.

Thank you for choosing to be a part of our network.
Best regards,

Gautam Banerjee

Chief Accountant

Phone : 1234567890 E-mail : gincom1@yahoo.com

The Automate process of sending personalized letters to your customers
using the data from your "Customer_Master" records. Here's how you can
approach this:

Step 1: Create a Word Document Template

Open Microsoft Word and create a template for your letter. Include
placeholders such as <CustomerName>, <CustomerAddress>, etc. where
you want to insert customer-specific information.

Step 2: Write VBA Code in Excel
Open the Excel workbook containing your "Customer_Master" records.
Press ALT + F11 to open the VBA Editor.

Insert a new module and write the VBA code for generating and sending
letters.

Step 3: Read Customer Data

Use VBA to read data from your "Customer_Master" sheet. Loop through
each customer's record and retrieve their name, address, and any other
information you want to include in the letter.

Step 4: Open Word Document and Replace Placeholders
Use VBA to open the Word document template you created in Step 1.

Replace the placeholders in the Word document with the actual customer
data using the Replace method.

Step 5: Save and Send Letters
Save the modified Word document with a uniqgue name for each customer.

If you want to send the letters as attachments via email, you can use VBA's
Outlook.Application to create emails with the Word documents as
attachments.

File name: ‘ @

Save as type: Word Macro-Enabled Document

Copy and Paste the Below Code:

Remember to adapt the code to match your file paths, sheet names,
template, and other specific details. This is just a basic outline, and you
might need to add error handling and additional functionality based on
your requirements.

Private Sub PrntAck_Click()
Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim WordApp As Object
Dim WordDoc As Object
Dim CustName As String
Dim CustAddress As String
Dim CustCity As String
Dim CustPin As String
Dim CustState As String
Dim CustPhone As String
Dim CustEmail As String
Dim CustPAN As String
Dim CustGSTIN As String

' Start Word application
Set WordApp = CreateObject("Word.Application")

WordApp.Visible = True

" Loop through each customer record

Fori=2To ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

CustName = ws.Cells(i, 2).Value
CustAddress = ws.Cells(i, 3).Value
CustCity = ws.Cells(i, 4).Value
CustPin =ws.Cells(i, 5).Value
CustState = ws.Cells(i, 6).Value
CustPhone = ws.Cells(i, 7).Value
CustEmail = ws.Cells(i, 8).Value
CustPAN = ws.Cells(i, 9).Value
CustGSTIN = ws.Cells(i, 11).Value

' Open the Word template

Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\GB.docm")

‘Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\Custom Office
Templates\AckTemplate.dot")

'‘Set WordDoc =
WordApp.Documents.Open("E:\AckTemplate.docx")

' Replace placeholders with customer data

WordDoc.Content.Find.Execute FindText:="<Name>",
ReplaceWith:=CustName

WordDoc.Content.Find.Execute FindText:="<Address>",
ReplaceWith:=CustAddress

WordDoc.Content.Find.Execute FindText:="<City>",
ReplaceWith:=CustCity

WordDoc.Content.Find.Execute FindText:="<pin>",
ReplaceWith:=CustPin

WordDoc.Content.Find.Execute FindText:="<State>",
ReplaceWith:=CustState

WordDoc.Content.Find.Execute FindText:="<phone>",
ReplaceWith:=CustPhone

WordDoc.Content.Find.Execute FindText:="<Email>",
ReplaceWith:=CustEmail

WordDoc.Content.Find.Execute FindText:="<PAN>",
ReplaceWith:=CustPAN

WordDoc.Content.Find.Execute FindText:="<GSTIN>",
ReplaceWith:=CustGSTIN

' Save and close the modified document

WordDoc.SaveAs
"C:\Users\user\Documents\Ack letter\AckTemplate " & CustName &
".dot"

WordDoc.Close

Next i

' Clean up Word application

WordApp.Quit

Set WordDoc = Nothing

Set WordApp = Nothing
End Sub

Line by Line Description:

Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

In this code snippet, you are declaring a variable named ws of type
Worksheet. You then use the Set keyword to assign an actual worksheet
object to the ws variable. The worksheet being assigned is the one named
"Customer_Master" within the workbook where the VBA code is running.
This allows you to interact with and manipulate the data in the
"Customer_Master" worksheet.

Dim WordApp As Object
Dim WordDoc As Object
Dim CustName As String
Dim CustAddress As String
Dim CustCity As String

In this part of the code, you are declaring several variables that will be used
for interacting with Microsoft Word's object model.

WordApp is declared as an object that will represent the instance of Microsoft
Word application. It's used to control Word and perform various tasks.

WordDoc is declared as an object that will represent a Word document. It
will be used to open, manipulate, and save Word documents.

CustName and CustAddress are declared as strings. These variables will be
used to store the customer's name and address retrieved from the Excel
worksheet.

These variable declarations set the stage for interacting with both Excel
(using the ws worksheet object) and Microsoft Word (using the WordApp and
WordDoc objects) to generate customized letters.

Set WordApp = CreateObject("Word.Application")
WordApp.Visible = True

You are creating an instance of Microsoft Word's application using the
CreateObject function with the argument "Word.Application". This essentially
opens a new instance of Microsoft Word on your computer, which you can
interact with using VBA code.

The second line, WordApp.Visible = True, sets the visibility of the Word
application to "True", meaning that the Word application window will be
shown on the screen. This allows you to see the Word documents being
manipulated by the VBA code.

Overall, these lines of code create a connection to Microsoft Word and make
it visible so that you can work with Word documents programmatically
through VBA.

For i =2 To ws.Cells(ws.Rows.Count, "A").End(xIUp).Row
CustName = ws.Cells(i, 2).Value
CustAddress = ws.Cells(i, 3).Value

CustCity = ws.Cells(i, 4).Value

A loop is being used to iterate through a range of cells in the
"Customer_Master" worksheet (ws). Specifically, it's starting from the second

row (assuming the first row contains headers) and continues until the last
non-empty cell in column A. Here's a breakdown of what's happening:

For i = 2 To ws.Cells(ws.Rows.Count, "A").End(xlUp).Row: This sets up a
loop that will iterate from row 2 to the last non-empty row in column A of the
"Customer_Master" worksheet. It's using the Rows.Count property to get the
total number of rows in the worksheet and the End(xIUp).Row part to find the
last non-empty row in column A.

Inside the loop, the values of the columns for the current row are being
assigned to variables:

CustName = ws.Cells(i, 2).Value: This assigns the value in column 2 (B) of
the current row to the CustName variable.

CustAddress = ws.Cells(i, 3).Value: This assigns the value in column 3 (C)
of the current row to the CustAddress variable.

CustCity = ws.Cells(i, 4).Value: This assigns the value in column 4 (D) of the
current row to the CustCity variable.

The loop allows you to process each row of data in the "Customer_Master"
worksheet, extracting the values in columns 2, 3, and 4 for further use,
possibly for generating letters or reports based on this data.

Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\GB.docm")

WordDoc.Content.Find.Execute FindText:="<Name>",
ReplaceWith:=CustName

WordDoc.Content.Find.Execute FindText:="<Address>",
ReplaceWith:=CustAddress

WordDoc.Content.Find.Execute FindText:="<City>",
ReplaceWith:=CustCity

The code is working with a Word document (WordDoc) that is being opened
using the Open method of the Documents collection in the Word application.
Here's what's happening step by step:

Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\GB.docm"):

This line opens a Word document with the filename "GB.docm" located in
the "C:\Users\user\Documents" folder. The Set keyword is used to assign
the opened document to the WordDoc variable.

WordDoc.Content.Find.Execute FindText:="<Name>",
ReplaceWith:=CustName:

This line uses the Find method to search for the placeholder text "<Name>"
in the content of the opened Word document (WordDoc). When found, it's
replaced with the value stored in the CustName variable.

WordDoc.Content.Find.Execute FindText:="<Address>",
ReplaceWith:=CustAddress:

Similar to the previous line, this one searches for the placeholder text
"<Address>" in the document's content and replaces it with the value stored
in the CustAddress variable.

WordDoc.Content.Find.Execute FindText:="<City>",
ReplaceWith:=CustCity:

This line searches for the placeholder text "<City>" and replaces it with the
value stored in the CustCity variable.

The purpose of these lines is to find and replace specific placeholders within
the Word document's content with the corresponding customer data obtained
from the Excel worksheet. This allows you to personalize the content of the

WordDoc.SaveAs
"C:\Users\user\Documents\Ack_letter\AckTemplate " & CustName &
".dot"

WordDoc.Close
Next i

The code is saving the modified Word document with the replaced customer
data to a specified folder. Here's what each line does:

WordDoc.SaveAs
"C:\Users\user\Documents\Ack _letter\AckTemplate " & CustName &
".dot":

This line uses the SaveAs method to save the modified Word document. It
specifies the path where the document will be saved, along with the
filename. The filename is constructed using the customer name
(CustName) to make each document unique. The file extension ".dot"
indicates a Word template file.

WordDoc.Close:
This line closes the current Word document that was opened and modified.

Next i: This line is part of a loop (For loop). It moves the loop to the next
iteration, which involves processing the next customer's data and generating
the corresponding letter.

In summary, these lines of code are responsible for saving the modified Word
document with customer-specific data to a designated folder. The loop
iterates through each customer's data, generating and saving personalized
letters for each customer. The letters are saved as Word template files (with
a ".dot" extension) in the "Ack_letter" folder.

WordApp.Quit
Set WordDoc = Nothing
Set WordApp = Nothing

WordApp.Quit: This line closes the Microsoft Word application that was
opened for generating and modifying the letters. It ensures that the Word
application is properly closed after the letters have been generated and
saved.

Set WordDoc = Nothing: This line releases the reference to the WordDoc
object, effectively disconnecting it from the opened Word document.

Releasing the reference helps to free up memory and resources associated
with the document.

Set WordApp = Nothing: This line releases the reference to the WordApp
object, which represents the Microsoft Word application instance that was
created. Releasing this reference ensures that the Word application instance
Is properly closed and its resources are released.

Overall, these lines of code ensure that any resources used by the Microsoft
Word application and documents are properly released and cleaned up,
preventing memory leaks and improving the efficiency of your VBA program.

Selective Customer Letter Print:

=

N 4 . CHRF- TA

v A Owt ot | ey
A B C (o) £ L M N

1 Cust_ID i:ust_Name Cust_Address Cust_City Cust_PIN Cust_Type SR_ID Cust_Tag
: AO1 Agarwal Traders Chandni Chawk Lucknow 226005 SD SRO1

: BO1 Bansal Agencies M.G.Road Ahmedab 654321 SD SRO1

:+ CO1 Chandni Bros Ajimganj Patna 800026 SC SRO3

5 802 S$.8.Packaging Malhotra Bagh Chennai 600012 SC SRO2

s AD2 Alhulalia & Co Gurdwara Road Amritsor 700010 SD SRO3

7 AD3 Ashok and Company R.N.Tagore Roa(Ranchi 541236 SC SRO3

s S03 S.K.Enterprises Burra Bazar Kolkata 700009 SC SROS

s GO1 Gautam Banerjee Housing Estatde Kolkata 700011 SD SR04

0 D02 Deepak Srivastava Dr. A.P.J. KalamTribandai 400025 SC SRO9

11,602 G.K. Srivastava NH 34, Krishnan Raghunat 723004 SD SROS5

o Selected Cus.tomer will be Printed (Red Color)

Mo [

e CPERn GO R I OO T

For i = 2 To ws.Cells(ws.Rows.Count, "A").End(xlUp).Row
CustType = ws.Cells(i, 12).Value

If CustType = "SD" Then

' The code inside this block will execute for customers
with CustType = "SD"

' You can place your desired code here to perform
specific actions for these customers

' For example, you can generate letters or perform other
operations.

End If

' The loop will continue to the next iteration to check the
next customer

Next i

The lines of code you provided are inside a loop that iterates through each
row of the "Customer Master" worksheet to check the value in the
"CustType" column. If the value in the "CustType" column is equal to "SD",
then a block of code is executed. Here's a breakdown of how this works:

In this code, you're iterating through each row in the "Customer_Master"
worksheet, and for each row, you're retrieving the value in the "CustType"
column using ws.Cells(i, 12).Value. If the value is "SD", then the code block

within the If CustType = "SD" Then ... End If is executed, allowing you to
perform specific actions for customers with CustType "SD". You can
customize the code within the If block to suit your needs, such as generating
letters or performing other tasks. The loop continues to the next iteration to
process the next customer record.

Copy and Paste Full code for selected Customer Letter Print:

Private Sub PrntAck_Click()
Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Customer_Master")

Dim WordApp As Object
Dim WordDoc As Object
Dim CustName As String
Dim CustAddress As String
Dim CustCity As String
Dim CustPin As String
Dim CustState As String
Dim CustPhone As String
Dim CustEmail As String
Dim CustPAN As String
Dim CustGSTIN As String

' Start Word application
Set WordApp = CreateObject("Word.Application")
WordApp.Visible = True

‘Loop through each customer record
'For i =2 To ws.Cells(ws.Rows.Count, "A").End(xIUp).Row

Fori=2To ws.Cells(ws.Rows.Count, "A").End(xIUp).Row
CustType = ws.Cells(i, 12).Value

If CustType ="SD" Then

CustName = ws.Cells(i, 2).Value
CustAddress = ws.Cells(i, 3).Value
CustCity = ws.Cells(i, 4).Value
CustPin = ws.Cells(i, 5).Value
CustState = ws.Cells(i, 6).Value
CustPhone = ws.Cells(i, 7).Value
CustEmail = ws.Cells(i, 8).Value
CustPAN = ws.Cells(i, 9).Value
CustGSTIN = ws.Cells(i, 11).Value

' Open the Word template

Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\GB.d
ocm")

‘Set WordDoc =
WordApp.Documents.Open("C:\Users\user\Documents\Custo
m Office Templates\AckTemplate.dot")

‘Set WordDoc =
WordApp.Documents.Open("E:\AckTemplate.docx")

' Replace placeholders with customer data

WordDoc.Content.Find.Execute FindText:="<Name>",
ReplaceWith:=CustName

WordDoc.Content.Find.Execute FindText:="<Address>",
ReplaceWith:=CustAddress

WordDoc.Content.Find.Execute FindText:="<City>",
ReplaceWith:=CustCity

WordDoc.Content.Find.Execute FindText:="<pin>",
ReplaceWith:=CustPin

WordDoc.Content.Find.Execute FindText:="<State>",
ReplaceWith:=CustState

WordDoc.Content.Find.Execute FindText:="<phone>",
ReplaceWith:=CustPhone

WordDoc.Content.Find.Execute FindText:="<Email>",
ReplaceWith:=CustEmail

WordDoc.Content.Find.Execute FindText:="<PAN>",
ReplaceWith:=CustPAN

WordDoc.Content.Find.Execute FindText:="<GSTIN>",
ReplaceWith:=CustGSTIN

' Save and close the modified document

WordDoc.SaveAs
"C:\Users\user\Documents\Ack_letter\AckTemplate " &
CustName & ".dot"

WordDoc.Close
End If

Next |

' Clean up Word application

WordApp.Quit

Set WordDoc = Nothing

Set WordApp = Nothing
End Sub

How to add comments in VBA coding.

In VBA, you can add comments to your code to provide explanations,
descriptions, or notes that help you and others understand the code's
purpose and functionality. Comments are ignored by the VBA compiler and
are intended for human readers.

There are two types of comments in VBA:

Single-line Comments: These comments are used for a single line of text.

To add a single-line comment, use an apostrophe ' at the beginning of the
line:

' This is a single-line comment

Multi-line Comments: These comments can span multiple lines and are
enclosed within /* ... */.

To add a multi-line comment, enclose the text within /* and */:

[* This is a multi-line comment */

Here's an example of how comments can be used in VBA code:
Sub ExampleCode()

' This is a comment explaining the purpose of the code

Dim x As Integer x = 10

‘This comment explains the value assignment

' Multi-line comment

/* The following loop iterates through an array and performs calculations on
each element */

Fori=1To5 ' Calculate square of i square =i * |
Debug.Print "Square of " & i & " is " & square Next i

' End of the program

MsgBox "Code execution completed!" End Sub

Adding meaningful comments to your code can greatly improve its readability
and maintainability, making it easier for you and others to understand and
work with the code in the future.

Gautam Banerjee

“Helping beginners learn something new is a
great way to share your knowledge and make
a positive impact”.

Email: gincoml@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

D@NAT Pay by UPI

9748327614

