Total Records Foand 39 Amount Sales by Oppo Reno 7 Pro of Rs. 517,585.00

Seleet Year to view Year. wise Sales Refresh List NS
4 | | Ma

2018 2019 -2020 2021 2022 Close Form

Listbox Controls

Video Link : https://youtu.be/eVcUatKVGlo

Designed to perform various functions related

(List Box) to data analysis and presentation.

The user interface components that are being created or utilized in a VBA
userform or similar context. Here's a breakdown of the components
mentioned:

2 Listboxes for showing Data: These are likely Listbox controls used to
display data. You have two of them, which can be used to show different sets
of data.

3 Listboxes for Month Name, Customer Name, and Product Name:
These three Listboxes are probably used for selecting or displaying month
names, customer names, and product names, respectively.

Some Labels: Labels are used to display text or descriptions on the
userform. They provide information to the user.

https://youtu.be/eVcUatKVG1o

Few Option Buttons inside 2 Frames: Option Buttons (also known as
Radio Buttons) are used for making selections within a set of mutually
exclusive options. Placing them inside Frames can help organize them
visually.

2 Command Buttons: Command Buttons are typically used for triggering
actions, such as submitting a form or running a specific function.

Image Control: This is likely used to display images, such as pictures or
icons.

In summary, a user interface layout that includes various controls like
Listboxes, Labels, Option Buttons, Command Buttons, and an Image
Control, all organized within Frames. These components collectively make
up the user interface of the application or userform and allow users to interact
with and view data.

The key aspects related to customizing and working with controls in a user
interface, as well as the requirement for specific Excel worksheets. Here's a
breakdown:

Changing Control Properties: You can modify various aspects of controls,
including:

Name of the Controls: This refers to the unique identifier for each control.
Changing control names can make it easier to reference them in code.

Captions: Captions are the text displayed on controls like Labels and
Command Buttons. You can customize this text to make your interface user-
friendly.

Font Formatting: You can adjust the font type, size, color, and other
formatting properties for text-based controls like Labels.

Background Color or Transparency: Depending on the control type, you
can change the background color or even make it transparent to blend with
the form.

Special Effects: Some controls might support special visual effects, which
can enhance the user interface.

Excel Worksheets: The need for specific Excel worksheets, including:

Customer Master: This worksheet likely contains data related to customers.
Product Master: This worksheet might store information about products.

Sales Rep Master: This could be a worksheet with details about sales
representatives.

Sales Data Sheet: This worksheet probably holds the primary sales data
that the application or userform interacts with.

In a VBA (Visual Basic for Applications) context, these worksheets would be
used for data storage and retrieval, and the controls mentioned in the first
part of the sentence would be used to create a user-friendly interface for
interacting with this data.

Overall, the outlines the customization possibilities for user interface controls
and highlights the importance of specific Excel worksheets in the context of
the application or userform.

Plan for Coding: Code appears to be VBA (Visual Basic for Applications) code written
for use in Microsoft Excel. This code is associated with a userform in Excel and is
designed to perform various functions related to data analysis and presentation. Here's a
breakdown of some of the controls and their purposes:

01. Dim Statements: These lines declare variables that will be used throughout the code
to store data or references to objects. For example, Dim SalesYear As String declares a
variable named SalesYear to store a string.

02. Private Sub: These are event handler procedures. They are triggered when specific
events occur, such as clicking a button or initializing a userform. For example, Private
Sub CmdRefresh_Click() is executed when a button with the name CmdRefresh is
clicked.

03. ListBox: ListBox controls are used to display a list of items from which users can
make selections. In this code, ListBox2 Click(), ListBox3_Click(), and other similar
procedures handle events when items in ListBoxes are clicked.

04. UserForm_lInitialize(): This is an event handler that runs when the userform is
initialized. It's used to populate ListBoxes and perform other setup tasks when the
userform is opened.

05. Function Contains(): This is a custom function used to check if an item exists in a
collection. Collections are used to store and manage lists of items in VBA.

06. Select Case Statement: The Select Case statement is used to evaluate an
expression against a list of possible values. In this code, it's used to change the displayed
image (ImageProgress.Picture) based on the value of x.

07. Image: Images are loaded into an Image control (ImageProgress) to display pictures
dynamically based on user actions.

08. Setting Values: Various parts of the code involve setting and updating values of
controls, labels, and variables based on user interactions or data processing.

09. Loading Pictures: Images are loaded into an Image control (ImageProgress) based
on certain conditions or events.

10. File Paths: File paths to images and other resources are specified in the code. For
example, "E:\\Chennai_Tours\Excel_Picture\Chennai_01.jpg" is a file path to an image.

11. Worksheet References: The code references specific worksheets within the Excel
workbook to retrieve and manipulate data.

12. Collections: Collections are used to store and manage lists of items. In this code,
collections like Addeditems are used to keep track of added items in ListBoxes to ensure
uniqueness.

13. String Manipulation: The code includes string manipulation, such as joining strings
and using string values to determine the course of action.

14. Updating Labels: Labels are updated with text to provide information to the user.

15. Event Handling: Event handlers like ListBox_Click() and Button_Click() respond to
user interactions with controls on the userform.

16. Loading Data: There are comments indicating that data is being loaded or processed.
This might include retrieving data from worksheets and displaying it in ListBoxes or other
controls.

This code appears to be part of an Excel userform used for data analysis and
presentation. It involves working with data from various worksheets, displaying images,
and responding to user interactions. Please note that to fully understand and utilize this
code, you would need to have a good understanding of VBA programming within Excel.

Line by line Coding descriptions: (Copy and Paste)

Dim SalesYear As String
Dim SalesSr As String
Dim NameofSR As String

Dim MonthName As String

Dim CustName As String

Dim ProdSales As String

Dim ProdName As String

Dim ProductDictionary As Object
Dim SelectedProductID As String
Dim ItemListClick As String

Dim wsltem As Worksheet

Dim WsltemLastRow As Long
Dim WsColRef As String

These lines of code are declaring variables in VBA (Visual Basic for Applications), each
with a specific data type and purpose. Let's break down what each of these declarations
means:

Dim SalesYear As String: This declares a variable named SalesYear with a data type
of String. This variable is likely intended to store a year related to sales data.

Dim SalesSr As String: Similar to the previous line, this declares a variable named
SalesSr as a String. It probably stores a sales-related identifier or code.

Dim NameofSR As String: This declares a variable called NameofSR as a String. It
appears to be intended to store the name of a sales representative.

Dim MonthName As String: MonthName is declared as a String. It is likely used to store
the name of a month.

Dim CustName As String: CustName is another String variable. It probably stores the
name of a customer.

Dim ProdSales As String: This variable, named ProdSales, is declared as a String. It
may store information related to product sales.

Dim ProdName As String: ProdName is declared as a String. Itis likely intended to store
the name of a product.

Dim ProductDictionary As Object: This declares a variable called ProductDictionary as
an Object. In VBA, an Object can represent various types of objects, including collections
and dictionaries. This variable is likely used to store data in a dictionary-like structure.

Dim SelectedProductID As String: SelectedProductID is declared as a String. It is
probably used to store an identifier related to a selected product.

Dim ItemListClick As String: ItemListClick is a String variable. It likely stores the name
or identifier of an item clicked in a list.

Dim wsltem As Worksheet: wsltem is declared as a Worksheet object. It is used to
reference a specific worksheet in an Excel workbook. This variable allows you to interact
with and manipulate data on that worksheet.

Dim WsltemLastRow As Long: WsltemLastRow is declared as a Long data type. It is
used to store the last row number of data on a worksheet. This can be useful for looping
through rows of data.

Dim WsColRef As String: WsColRef is declared as a String. It is likely used to store a
reference to a specific column on a worksheet, such as "A" for column A or "B" for column
B.

In summary, these variable declarations set aside memory space to store various types
of data, such as text, numbers, and references to objects. They are an essential part of
VBA programming as they allow you to work with and manipulate data within your code.

Line by line Coding descriptions: (Copy and Paste)

Private Sub CmdRefresh_Click()
ListPopulate
End Sub

Private Sub LbIClose_Click()
Unload Me
MainMenuForm.Show

End Sub

Private Sub ListBox2_Click()
PictureLoad

End Sub

Here's a description of the provided VBA code:
Private Sub CmdRefresh_Click()

This is an event handler procedure that runs when a control with the name CmdRefresh
is clicked. Typically, CmdRefresh is associated with a command button in a userform or
worksheet.

When this button is clicked, it calls the ListPopulate procedure, which presumably
populates or refreshes a list or data in the user interface.

Private Sub LbIClose_Click()

This is an event handler procedure that runs when a control with the name LbIClose is
clicked. Normally, LbIClose refers to a label that acts like a clickable button.

When this label is clicked, it executes the following actions:
Unload Me: This unloads (closes) the userform or window where this code resides.

MainMenuForm.Show: It shows a userform named MainMenuForm. This typically opens
another form or menu interface.

Private Sub ListBox2_Click()

This event handler procedure runs when a ListBox control with the name ListBox2 is
clicked.

When this ListBox is clicked, it calls the PictureLoad procedure. Presumably, this
procedure is responsible for loading or displaying images based on the item selected in
ListBox2.

These event handler procedures are part of a VBA userform or worksheet code module.
They define what should happen when specific user interface elements are interacted
with, such as clicking a button, label, or selecting an item in a ListBox.

Line by line Coding descriptions: (Copy and Paste)

Private Sub ListBox3_Click()
WsColRef = "L"
ItemListClick = ListBox3.Text
SalesAsltemList

End Sub

Private Sub ListBox4_Click()
WsColRef = "M"
ItemListClick = ListBox4.Text
SalesAsltemList

End Sub

Here's a description of the provided VBA code:
Private Sub ListBox3_Click()

This is an event handler procedure that runs when a ListBox control with the name
ListBox3 is clicked.

When ListBox3 is clicked, it performs the following actions:

WsColRef = "L": It assigns the value "L" to the variable WsColRef. This variable is likely
used to reference a specific column in an Excel worksheet.

ItemListClick = ListBox3.Text: It assigns the text of the selected item in ListBox3 to the
variable ItemListClick.

SalesAsltemList: It calls the SalesAsltemList procedure. This procedure likely uses the
WsColRef and ItemListClick values to perform some operation related to sales data.

Private Sub ListBox4_Click()

This is another event handler procedure that runs when a ListBox control with the name
ListBox4 is clicked.

When ListBox4 is clicked, it performs similar actions to the previous code:

WsColRef ="M": It assigns the value "M" to the variable WsColRef, indicating a different
column in the worksheet.

ItemListClick = ListBox4.Text: It assigns the text of the selected item in ListBox4 to the
variable ItemListClick.

SalesAsltemList: It calls the SalesAsltemList procedure with these updated values.

These event handler procedures are likely used to capture user selections from ListBox3
and ListBox4 and then pass this information to the SalesAsltemList procedure for further
processing. The choice of column reference ("L" or "M") appears to be determined by
which ListBox is clicked.

Line by line Coding descriptions: (Copy and Paste)

Private Sub ListBox5_Click()
ProdSales = ListBox5.Text

' Get the selected Product Name from the ListBox

SelectedProductName = ListBox5.value

' Check if the Product Name exists in the dictionary
If ProductDictionary.Exists(SelectedProductName) Then

' Retrieve the corresponding Product ID

SelectedProductID = ProductDictionary(SelectedProductName)

' Store the Product ID in a variable or use it as needed

' For example, you can assign it to a module-level variable
' to make it accessible throughout the userform code.

' Example:

' ModuleLevelVariable = SelectedProductID

' Display the selected Product ID (optional)
MsgBox "Selected Product ID: " & SelectedProductID
Else
" Handle the case where the Product Name doesn't exist in the dictionary
MsgBox "Product Name not found in the dictionary."
End If
‘YearlyProdSales
YearlyProdSales

End Sub

This VBA code is associated with a ListBox control (presumably named ListBox5) and is
executed when an item in that ListBox is clicked. Here's what it does:

ProdSales = ListBox5.Text: It assigns the text of the selected item in ListBox5 to the
variable ProdSales. This variable likely holds the name or description of a product.

SelectedProductName = ListBox5.Value: It retrieves and assigns the value (usually
text) of the selected item in ListBox5 to the variable SelectedProductName. This variable
is used to store the selected product name.

It checks if the selected product name exists in a dictionary called ProductDictionary. A
dictionary is a data structure that maps keys to values.

If the selected product name exists in the dictionary:

It retrieves the corresponding Product ID associated with the selected product name and
stores it in the variable SelectedProductiD.

Optionally, it displays a message box with the selected Product ID.

If the selected product name is not found in the dictionary, it displays a message box
indicating that the product name is not in the dictionary.

Finally, it calls a procedure named YearlyProdSales, which presumably performs some
action related to the yearly sales of the selected product.

This code appears to be part of a user interface for selecting a product, retrieving its
associated ID from a dictionary, and then triggering some action related to the selected
product's sales data.

Line by line Coding descriptions: (Copy and Paste)

Private Sub UserForm_Initialize()
ListPopulate
MonthListPopulate
CusomerNamePopulate

ListPopulateProd

ImageProgress.Picture =
LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_01.jpg")

End Sub

This code is part of the initialization process for a UserForm in VBA (Visual Basic for
Applications). It is executed automatically when the UserForm is loaded or initialized.
Here's what each line does:

ListPopulate: This line calls a procedure or function named ListPopulate. The purpose
of this procedure is to populate a ListBox (or similar control) with data. It might load data
from a worksheet or another data source and display it in a ListBox.

MonthListPopulate: This line calls a procedure or function named MonthListPopulate.
This procedure is likely responsible for populating another ListBox with a list of months.
It adds the names of months (e.g., "January,"” "February") to the ListBox.

CustomerNamePopulate: This line calls a procedure or function named
CustomerNamePopulate. It is probably responsible for populating a ListBox or similar
control with customer names. It retrieves the customer names from a data source and
displays them in the ListBox.

ListPopulateProd: This line calls a procedure or function named ListPopulateProd.
Similar to ListPopulate, this procedure likely populates a ListBox with data related to
products. It could be retrieving product names from a worksheet or another data source
and displaying them in the ListBox.

ImageProgress.Picture =
LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_01.jpg"): This line sets the
picture property of an Image control named ImageProgress. It loads an image file located
at the specified file path ("E:\Chennai_Tours\Excel Picture\Chennai_01.jpg") and
displays it within the Image control on the UserForm. This is often used to show a default
or initial image when the UserForm loads.

In summary, the UserForm_Initialize event handler is responsible for setting up or
initializing various aspects of the UserForm when it is loaded. This includes populating
lists, loading images, or performing other setup tasks necessary for the functionality of
the form.

Line by line Coding descriptions: (Copy and Paste)

Private Sub MonthListPopulate()
ListBox3.AddItem "April"

ListBox3.AddItem "May"
ListBox3.AddItem "June"
ListBox3.AddItem "July"
ListBox3.AddItem "August”
ListBox3.AddItem "September"
ListBox3.AddItem "October"
ListBox3.AddItem "November"
ListBox3.AddItem "December”
ListBox3.AddIltem "January"
ListBox3.AddItem "February"
ListBox3.AddItem "March"
End Sub

The above VBA code is part of a subroutine named MonthListPopulate. This subroutine
is responsible for populating a ListBox control, likely named ListBox3, with a list of month
names. Here's a breakdown of what this code does:

Private Sub MonthListPopulate(): This line defines the start of a private subroutine
named MonthListPopulate. Private subroutines can only be accessed and executed from
within the module in which they are defined. They are typically used for encapsulating
specific tasks.

ListBox3.Addltem "April" to ListBox3.AddIltem "March": These lines add individual
items to the ListBox3 control. Each line corresponds to adding a month name to the
ListBox. It starts with "April" and goes through all the months of the year, ending with
"March."”

ListBox3.Addltem: This is a method used to add an item to a ListBox control. In this
case, it adds the specified month name as an item in ListBox3.

As a result, when the MonthListPopulate subroutine is executed, it populates ListBox3
with the names of the months from "April* to "March." This can be helpful for allowing
users to select a specific month from the ListBox in the user interface of the application.

Line by line Coding descriptions: (Copy and Paste)

Private Sub ListpopulateProd1()
Dim LastRow As Long
Dim i As Long
Set ws = ThisWorkbook.Sheets("Product_Master")
LastRow = ws.Cells(ws.Rows.Count, "B").End(xIUp).row
For i =2 To LastRow ' Assuming the data starts from row 2

ListBox5.AddItem ws.Cells(i, 2).value

Next i

End Sub

The above VBA code is part of a subroutine named ListpopulateProdl. This subroutine
is responsible for populating a ListBox control, likely named ListBox5, with data from an
Excel worksheet named "Product_Master." Here's a breakdown of what this code does:

Private Sub ListpopulateProdl1(): This line defines the start of a private subroutine
named ListpopulateProd1l. Private subroutines can only be accessed and executed from
within the module in which they are defined. They are typically used for encapsulating
specific tasks.

Dim LastRow As Long: This line declares a variable named LastRow as a Long data
type. This variable will be used to store the last row number with data in the worksheet.

Dim i As Long: This line declares a loop counter variable i as a Long data type. It will be
used to iterate through rows in the worksheet.

Set ws = ThisWorkbook.Sheets("Product_Master"): This line sets the ws variable to
refer to a specific worksheet in the current workbook. It specifies the worksheet named
"Product_Master."

LastRow = ws.Cells(ws.Rows.Count, "B").End(xIUp).Row: This line calculates the
last row with data in column "B" of the "Product_Master" worksheet. Here's a breakdown
of this line:

ws.Rows.Count returns the total number of rows in the worksheet.
ws.Cells(ws.Rows.Count, "B") refers to the cell in the last row of column "B."

.End(xIUp) is used to navigate from the last cell in column "B" to the first non-empty cell
in that column, effectively finding the last row with data in column "B."

.Row retrieves the row number of the last cell found, which is stored in the LastRow
variable.

For i =2 To LastRow: This line starts a For loop, where i will be used to iterate from 2
(assuming that the data starts from row 2) to LastRow, which is the last row with data in
column "B" of the "Product_Master" worksheet.

ListBox5.AddItem ws.Cells(i, 2).Value: Inside the loop, this line adds an item to
ListBox5. It retrieves the value from the cell in the i-th row and the 2nd column (column
"B") of the "Product_Master" worksheet and adds it as an item to the ListBox.

As a result, when the ListpopulateProdl subroutine is executed, it populates ListBox5
with the data from column "B" of the "Product_Master" worksheet, starting from row 2 and
continuing until the last row with data in that column. This allows users to select a product
name from the ListBox in the user interface of the application.

Line by line Coding descriptions: (Copy and Paste)

Private Sub ListPopulateProd()
" Initialize the dictionary

Set ProductDictionary = CreateObject("Scripting.Dictionary")

' Populate the dictionary with data from the Product_Master sheet
Dim LastRow As Long

Dim i As Long

Dim ws As Worksheet

Set ws = ThisWorkbook.Sheets("Product_Master")

LastRow = ws.Cells(ws.Rows.Count, "B").End(xIUp).row

For i =2 To LastRow ' Assuming the data starts from row 2
Dim ProductName As String
Dim ProductID As String

" Assuming Product_ID is in Column A and Product_Name is in Column B
ProductID = ws.Cells(i, 1).value

ProductName = ws.Cells(i, 2).value

" Add the mapping to the dictionary

ProductDictionary(ProductName) = ProductID

" Add the Product Name to the ListBox
ListBox5.AddItem ProductName
Next i
End Sub

The VBA code is part of a subroutine named ListPopulateProd. This subroutine serves
the purpose of populating a dictionary (Scripting.Dictionary) with data from an Excel
worksheet named "Product_Master" and simultaneously adding the product names from
that worksheet to a ListBox, likely named ListBox5. Here's a breakdown of what this code
does:

Private Sub ListPopulateProd(): This line defines the start of a private subroutine
named ListPopulateProd. This subroutine initializes a dictionary and populates it with data
from an Excel worksheet.

" Initialize the dictionary: This comment provides a brief description indicating that a
dictionary is being initialized. Dictionaries are data structures that store key-value pairs.

Set ProductDictionary = CreateObject("Scripting.Dictionary"): This line initializes a
new Scripting.Dictionary object and assigns it to the variable ProductDictionary. This
dictionary will be used to store mappings between product names and their corresponding
IDs.

' Populate the dictionary with data from the Product_Master sheet: This comment provides
an overview of the next steps, which involve filling the dictionary with data from an Excel
worksheet.

Dim LastRow As Long: This line declares a variable named LastRow as a Long data
type. It will be used to store the last row number with data in the worksheet.

Dim i As Long: This line declares a loop counter variable i as a Long data type. It will be
used to iterate through rows in the worksheet.

Set ws = ThisWorkbook.Sheets("Product_Master"): This line sets the ws variable to
refer to a specific worksheet in the current workbook. It specifies the worksheet named
"Product_Master."

LastRow = ws.Cells(ws.Rows.Count, "B").End(xIUp).Row: This line calculates the
last row with data in column "B" of the "Product_Master" worksheet. It uses the .Cells
property to access cells in the worksheet, .Rows.Count to get the total number of rows,
and .End(xlUp) to navigate from the last cell in column "B" to the first non-empty cell in
that column. Finally, .Row retrieves the row number of the last cell found, which is stored
in the LastRow variable.

For i = 2 To LastRow: This line starts a For loop, where i will be used to iterate from 2
(assuming that the data starts from row 2) to LastRow, which is the last row with data in
column "B" of the "Product_Master" worksheet.

Dim ProductName As String and Dim ProductID As String: These lines declare two
variables, ProductName and ProductID, both as String data types. These variables will
be used to temporarily store values retrieved from the worksheet.

ProductID =ws.Cells(i, 1).Value and ProductName = ws.Cells(i, 2).Value: These lines
extract the values from columns "A" and "B" of the current row (i) in the "Product_Master"
worksheet and store them in the respective variables.

ProductDictionary(ProductName) = ProductID: This line adds an entry to the
ProductDictionary. It uses the ProductName as the key and ProductlD as the
corresponding value. This effectively creates a mapping between product names and
their IDs in the dictionary.

ListBox5.AddItem ProductName: This line adds the ProductName to the ListBox5. This
ListBox will display a list of product names to the user.

In summary, the ListPopulateProd subroutine initializes a dictionary, reads data from the
"Product_Master" worksheet, creates mappings between product names and IDs, and
adds the product names to a ListBox for user selection. This is a common approach when
you need to display a user-friendly list of items while maintaining a mapping to more
detailed data.

Line by line Coding descriptions: (Copy and Paste)

Private Sub CusomerNamePopulate()
Dim wsCust As Worksheet

Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

Dim LastRow As Long

LastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xIUp).row

Dim rng As Range
Set rng = wsCust.Range("B2:B" & LastRow) ' Assuming data starts from A2

ListBox4.Clear
ListBox4.List = rng.value

End Sub

The above VBA code is part of a subroutine named CusomerNamePopulate. This
subroutine is responsible for populating a ListBox, likely named ListBox4, with customer
names from an Excel worksheet named "Customer_Master." Here's a breakdown of what
this code does:

Private Sub CusomerNamePopulate(): This line defines the start of a private subroutine
named CusomerNamePopulate. This subroutine is responsible for populating a ListBox
with customer names.

Dim wsCust As Worksheet: This line declares a variable named wsCust as a reference
to a worksheet. It's set to refer to the "Customer_Master" sheet in the current workbook.

Set wsCust = ThisWorkbook.Worksheets("Customer_Master"): This line assigns the
"Customer_Master" worksheet to the wsCust variable, allowing us to work with that
specific sheet.

Dim LastRow As Long: This line declares a variable named LastRow as a Long data
type. It will be used to store the last row number with data in column A of the
"Customer_Master" sheet.

LastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xlUp).Row: This line
calculates the last row with data in column A of the "Customer_Master" sheet. It starts
from the bottom of the worksheet, moves upward until it finds the first non-empty cell, and
then retrieves the row number. The result is stored in the LastRow variable.

Dim rng As Range: This line declares a variable named rng as a Range data type. This
variable will represent the range of customer names in column B of the worksheet.

Set rng = wsCust.Range("B2:B" & LastRow): This line sets the rng variable to
represent the range of cells from "B2" to the last row in column B where customer names
are stored. It assumes that the data starts from row 2 in column B.

ListBox4.Clear: This line clears any existing items in ListBox4. This is important if you
want to refresh the ListBox with updated data.

ListBox4.List = rng.Value: This line populates ListBox4 with the values from the range
rng. In other words, it loads the customer names into the ListBox for user selection.

In summary, the CusomerNamePopulate subroutine initializes a reference to the
"Customer_Master" worksheet, determines the last row with data in column A, defines a
range representing customer names in column B, clears any existing items in ListBox4,
and populates ListBox4 with the customer names from the specified range, making them
available for selection in the user interface.

Line by line Coding descriptions: (Copy and Paste)

Private Sub ListPopulate()
Dim ws As Worksheet

Set ws = ThisWorkbook.Worksheets("Data")

Dim LastRow As Long

LastRow = ws.Cells(ws.Rows.Count, "A").End(xIUp).row

Dim rng As Range
Set rng = ws.Range("A1l:M" & LastRow) ' Assuming data starts from A2

ListBox1.Visible = False
ListBox2.Visible = True
ListBox2.Clear

ListBox2.List = rng.value

Label2.caption = "Total Records : " & LastRow - 1

Dim TotalY, TotalN, TotalYN

Dim i As Integer

Dim YN As String

DueYN ="Y"

Fori=2 To LastRow
If ws.Cells(i, 9).value = DueYN Then
TotalY = TotalY + ws.Cells(i, "E").value
Else
TotalN = TotalN + ws.Cells(i, "E").value
End If
TotalYN = TotalYN + ws.Cells(i, "E").value
‘LbiDataCustID = WsData.Cells(i, "A").value
'‘Label34.Caption = LbIDataCustID

Next i

'‘AmtRecd.caption = "Rs. " & Format(TotalY, "### ##0.00")

'‘AmtDues.caption = "Rs. " & Format(TotalN, "###,##0.00")

TotAmt.caption = "Total Sales Rs. " & Format(TotalYN, "###,##0.00")
End Sub

The above VBA code is part of a subroutine named ListPopulate. This subroutine
appears to be responsible for populating a ListBox (ListBox2), displaying some statistics
in labels, and performing calculations based on data from an Excel worksheet named
"Data." Let's break down what this code does step by step:

Setting Worksheet Reference: The code starts by setting a reference to the "Data”
worksheet within the current workbook.

Finding the Last Row: It calculates the last row with data in column A of the "Data" sheet
and stores it in the LastRow variable.

Defining the Data Range: A range variable rng is defined to represent the data range
from cell Al to the last row (assuming data starts from row 2).

Working with ListBoxes: It hides ListBox1 and shows ListBox2. Then, it clears any
existing items in ListBox2 and populates it with the data from the specified range.

Label2 Caption: The caption of Label2 is set to display the total number of records minus
one. The subtraction is likely because the code assumes the first row contains headers,
S0 it's subtracting one from the total row count.

Calculating Totals: Several variables (TotalY, TotalN, and TotalYN) are declared to keep
track of totals. It loops through the data rows (starting from row 2), checks a condition
based on column I (9th column), and calculates totals accordingly.

Updating Labels: There are some commented lines that appear to update labels
(AmtRecd, AmtDues, and TotAmt) with calculated values. These lines are currently
commented out, so they won't execute. You might want to uncomment and customize
them if needed.

In summary, this subroutine initializes a reference to the "Data" worksheet, populates
ListBox2 with data from the worksheet, displays the total number of records in Label2,
and calculates totals based on specific conditions in the data, although it currently doesn't
update labels with these calculated totals.

Line by line Coding descriptions: (Copy and Paste)

Private Sub YearlySales()

' This event handler runs when an Option Button is clicked.

' Define variables

Dim ws As Worksheet

Dim LastRow As Long

Dim ListBoxData As Object
Dim AddedIitems As Collection
Dim TotalRecordsYear As Long

Dim TotalAmountYear As Double

ListBox2.Visible = False
ListBox1.Visible = True
' Set the worksheet and last row

Set ws = ThisWorkbook.Worksheets("TempData")

LastRow = ws.Cells(ws.Rows.Count, "I").End(xIUp).row

' Clear the ListBox
Set ListBoxData = Me.ListBox1

ListBoxData.Clear

' Create a collection to keep track of added items

Set Addedltems = New Collection

TotalRecordsYear =0

TotalAmountYear =0

" Loop through the data and populate the ListBox with unique rows where Column | is
IINOII

Dim i As Long

Dim RowData As Range

Fori=1 To LastRow

If ws.Cells(i, "K").value = SalesYear Then ' Assuming Column | contains "Yes" or
IINOII

' Define a fixed range for RowData that includes all columns you want to display

Set RowData = ws.Range("A" & i & ":.L" & i) ' Adjust the range as needed

' Convert the 2D array to a 1D array of strings

Dim rowDataArray() As Variant

Dim j As Long

ReDim rowDataArray(1 To 1, 1 To RowData.Columns.Count)

For j =1 To RowData.Columns.Count

rowDataArray(1, j) = RowData.Cells(1, j).value

Next j

" Join the data and add it to the ListBox
Dim ItemKey As String
ItemKey = Join(Application.index(rowDataArray, 1, 0), vbTab)

If Not Contains(AddedIltems, ItemKey) Then
ListBoxData.AddIltem ItemKey
Addedltems.Add ItemKey, ItemKey ' Add the item to the collection
TotalRecordsYear = TotalRecordsYear + 1

TotalAmountYear = TotalAmountYear + ws.Cells(i, "D").value ' Assuming
Amount is in column E

End If

End If

Next i

" Update labels with the total counts and amounts
Label2.caption = "Total Records Found " & TotalRecordsYear

TotAmt.caption = "Amount Sales for " & SalesYear & " of Rs. " &
Format(TotalAmountYear, "###,##0.00")

End Sub

This subroutine, named YearlySales, is responsible for populating ListBox1 with unique
rows of data based on certain criteria and updating labels to display total counts and
amounts. Here's a description and analysis of this code:

Variable Definitions: Several variables are declared at the beginning of the subroutine.
These include references to worksheets (ws), a variable to store the last row with data in

column | (LastRow), an object variable for ListBox1 (ListBoxData), a collection to keep
track of added items (Addedltems), and variables to store the total number of records and
total amount for the selected year (TotalRecordsYear and TotalAmountYear,
respectively).

ListBox Visibility: Initially, ListBox2 is hidden (ListBox2.Visible = False), and ListBox1 is
made visible (ListBox1.Visible = True). This suggests that this code is related to switching
between different views in a user interface.

Clearing the ListBox: The ListBox (ListBox1) is cleared to remove any existing items
before populating it with new data.

Loop Through Data: The code then loops through the data in the worksheet named
"TempData" (assuming this is the data source). The loop goes from 1 to the last row
(LastRow) of data.

Conditional Check: Within the loop, there is a conditional check that verifies if the value
in column K for the current row matches the value stored in the variable SalesYear. This
condition determines whether a row of data should be considered for inclusion in
ListBox1.

Handling Unique Rows: If the condition is met, the code processes the row data. It
creates a range object (RowData) that spans the columns from A to L for the current row.
It then converts this row of data into a 1D array of strings (rowDataArray) and joins the
array elements into a single string (ItemKey) separated by tab characters. This allows for
displaying the entire row as a single item in ListBox1.

Checking for Uniqueness: Before adding the ItemKey to ListBox1, the code checks
whether it already exists in the AddedItems collection. If it's not already in the collection,
it's added to both ListBox1 and the AddedIltems collection. This ensures that only unique
rows are displayed in ListBox1.

Counting Records and Calculating Amount: As the code processes each eligible row,
it increments the TotalRecordsYear count and adds the value from column D (assuming
it's the amount) to TotalAmountYear. These variables are used to keep track of the total
records and total amount for the selected year.

Updating Labels: Finally, the code updates two labels (Label2 and TotAmt) with the total
records count and the total sales amount for the selected year. The Format function is
used to format the amount with commas and decimal places.

In summary, this code is part of a user interface where data from a worksheet is displayed
in a ListBox (ListBox1). It ensures that only unique rows of data, meeting specific criteria,
are shown in the ListBox, and it provides summary information about the displayed data
in the form of label captions.

Set Addedltems = New Collection

Addedltems is declared as a collection earlier in the code. Collections are a type of data
structure in VBA that can store a collection of items. In this case, it's used to keep track
of items that have already been added to ListBox1 to ensure that only unique items are
displayed.

New Collection is used to create a new instance of the Collection object and assign it to
the Addedltems variable. This effectively initializes the collection so that it can be used to
store items.

ItemKey = Join(Application.Index(rowDataArray, 1, 0), vbTab)

rowDataArray is a 2D array that represents a row of data in the worksheet. Each element
of this array corresponds to a cell in the row.

Application.Index is a function in VBA used to extract specific rows or columns from a 2D
array. In this case, it's used to extract all columns (represented by 1) for a single row (0)
from rowDataArray.

Join is a VBA function used to concatenate an array of strings into a single string with a
specified delimiter. In this case, the delimiter is specified as vbTab, which represents a
tab character.

The result of this line of code is that it takes all the values in the row represented by
rowDataArray, joins them together into a single string separated by tab characters, and
assigns this concatenated string to the IltemKey variable.

Putting it all together, these lines of code are used to create a unique identifier (ltemKey)
for each row of data in the worksheet. This identifier is then checked against the
Addedltems collection to ensure that only unique rows are added to ListBox1. If a row's
ItemKey is not in the collection, it means that the row hasn't been added to the ListBox
yet, and it can be added along with its ItemKey to keep track of uniqueness.

Dim rowDataArray() As Variant

This line declares a variable named rowDataArray as an array of type Variant. Variant is
a versatile data type in VBA that can hold various types of data, including numbers, text,
and objects. In this case, it's used to store the values from a row of data.

Dim j As Long

This line declares a variable | as a Long data type. It's a common practice to use |, i, or
similar variable names as loop counters.

ReDim rowDataArray(1 To 1, 1 To RowData.Columns.Count)

ReDim is short for "Re-dimension,” and it's used to change the dimensions of an array or
create a new array dynamically. In this case, it's used to create a new 2D array hamed
rowDataArray.

rowDataArray is declared as a 2D array with one row and a number of columns equal to
the number of columns in the RowData range. The RowData.Columns.Count part
determines the number of columns. This is done to match the size of the array to the
number of columns in the data row because each column value will be stored in a
separate element of this array.

So, if RowData.Columns.Count is, for example, 5 (meaning there are 5 columns in the
RowData range), then rowDataArray would be created as a 2D array with dimensions (1
To 1, 1 To 5), which essentially means it can hold the values of all 5 columns in the data
row.

To summarize, these lines of code prepare rowDataArray as a 2D array capable of
holding the values from a single row of data. The number of columns in the array is
determined dynamically based on the number of columns in the RowData range. This
array will be used to temporarily store the values from a row before they are joined into a
single string for display in the list box.

Line by line Coding descriptions: (Copy and Paste)

Private Sub YearlySRSales()
' This event handler runs when an Option Button is clicked.
' Define variables
Dim ws As Worksheet
Dim LastRow As Long
Dim ListBoxData As Object
Dim AddedItems As Collection
Dim TotalRecordsYear As Long

Dim TotalAmountYear As Double

ListBox2.Visible = False
ListBox1.Visible = True

' Set the worksheet and last row

Set ws = ThisWorkbook.Worksheets("TempData")

LastRow = ws.Cells(ws.Rows.Count, "I").End(xIUp).row

' Clear the ListBox
Set ListBoxData = Me.ListBox1

ListBoxData.Clear

' Create a collection to keep track of added items

Set Addedltems = New Collection

TotalRecordsYear =0

TotalAmountYear =0

' Loop through the data and populate the ListBox with unique rows where Column | is
IINOII

Dim i As Long

Dim RowData As Range

Fori=1 To LastRow
If ws.Cells(i, "I").value = SalesSr Then ' Assuming Column | contains "Yes" or "No"
' Define a fixed range for RowData that includes all columns you want to display

Set RowData = ws.Range("A" & i & ":.L" & i) " Adjust the range as needed

" Convert the 2D array to a 1D array of strings

Dim rowDataArray() As Variant

Dim j As Long

ReDim rowDataArray(1 To 1, 1 To RowData.Columns.Count)

For j =1 To RowData.Columns.Count

rowDataArray(1, j) = RowData.Cells(1, j).value

Next j

" Join the data and add it to the ListBox
Dim ItemKey As String
ItemKey = Join(Application.index(rowDataArray, 1, 0), vbTab)

If Not Contains(AddedIltems, ItemKey) Then
ListBoxData.AddIltem ItemKey
Addedltems.Add ItemKey, ItemKey ' Add the item to the collection
TotalRecordsYear = TotalRecordsYear + 1

TotalAmountYear = TotalAmountYear + ws.Cells(i, "D").value ' Assuming
Amount is in column E

End If

End If

Next i

" Update labels with the total counts and amounts
Label2.caption = "Total Records Found " & TotalRecordsYear

TotAmt.caption = "Amount Sales by " & NameofSR & " of Rs. " &
Format(TotalAmountYear, "###,##0.00")

Dim picturePath As String
picturePath = "D:\VBAExcel\" & NameofSR & ".jpg" ' Adjust the folder path

Imagel.Picture = LoadPicture(picturePath)

End Sub

Event Handler: This code is meant to run when an Option Button is clicked. It responds
to a specific user interaction.

Variables: It defines several variables, including ws for a worksheet, LastRow for the last
row with data, ListBoxData to handle a list box, Addedltems as a collection to keep track
of unique items, and variables for total records and amounts.

List Box Visibility: It changes the visibility of two list boxes (ListBox1l and ListBox2).
ListBox2 is set to be invisible (False), and ListBox1 is set to be visible (True).

Data Processing Loop: It loops through rows of data in a worksheet ("TempData"). For
each row where the value in Column | matches SalesSr, it does the following:

Defines a range (RowData) for the columns you want to display.

Converts this row's data into a 1D array of strings (rowDataArray) where each column
value is separated by a tab character.

Checks if this item is already in the collection (Addedltems). If not, it adds the item to the
ListBox, updates counters, and adds the item to the collection.

Label Updates: It updates the captions of two labels (Label2 and TotAmt) with
information about the total records found and the total amount of sales.

Image Loading: It loads an image into an image control (Imagel) based on a file path
(picturePath) constructed using the NameofSR variable.

Overall, this code is processing data in a worksheet, creating a unique list of items in a
list box, updating labels with summary information, and displaying an image. It's often
used in Excel VBA userforms to provide dynamic user interfaces for data analysis or
presentation.

Line by line Coding descriptions: (Copy and Paste)

Only Change the Excel sheet Col Reference

Private Sub YearlyProdSales()

' This event handler runs when an Option Button is clicked.

' Define variables
Dim ws As Worksheet

Dim LastRow As Long

Dim ListBoxData As Object
Dim AddedItems As Collection
Dim TotalRecordsYear As Long

Dim TotalAmountYear As Double

ListBox2.Visible = False

ListBox1.Visible = True

' Set the worksheet and last row

Set ws = ThisWorkbook.Worksheets("TempData")

LastRow = ws.Cells(ws.Rows.Count, "M").End(xIUp).row

' Clear the ListBox
Set ListBoxData = Me.ListBox1

ListBoxData.Clear

' Create a collection to keep track of added items

Set Addedltems = New Collection

TotalRecordsYear =0

TotalAmountYear =0

" Loop through the data and populate the ListBox with unique rows where Column | is
IINOII

Dim i As Long

Dim RowData As Range

Fori=1To LastRow
If ws.Cells(i, "F").value = SelectedProductID Then

Set RowData = ws.Range("A" & i & ":L" & i) ' Adjust the range as needed

' Convert the 2D array to a 1D array of strings

Dim rowDataArray() As Variant

Dim j As Long

ReDim rowDataArray(1 To 1, 1 To RowData.Columns.Count)

For j =1 To RowData.Columns.Count
rowDataArray(1, j) = RowData.Cells(1, j).value
Next j

" Join the data and add it to the ListBox
Dim ItemKey As String
ItemKey = Join(Application.index(rowDataArray, 1, 0), vbTab)

If Not Contains(Addedltems, ItemKey) Then
ListBoxData.Addltem ItemKey
Addedltems.Add ItemKey, ItemKey ' Add the item to the collection
TotalRecordsYear = TotalRecordsYear + 1

TotalAmountYear = TotalAmountYear + ws.Cells(i, "D").value ' Assuming
Amount is in column E

End If

End If
Next i

" Update labels with the total counts and amounts
Label2.caption = "Total Records Found " & TotalRecordsYear

TotAmt.caption = "Amount Sales by " & ProdSales & " of Rs. " &
Format(TotalAmountYear, "###,##0.00")

End Sub

Function Contains(col As Collection, key As Variant) As Boolean
' Check if the collection contains a given key
On Error Resume Next
col.ltem key
Contains = (Err.Number = 0)
Err.Clear
On Error GoTo 0

End Function

The Contains function is a custom VBA function that is designed to check if a given key
exists in a collection. Here's a breakdown of how it works:

Function Contains(col As Collection, key As Variant) As Boolean: This line defines
the function named Contains. It takes two parameters: col, which is a collection, and key,
which is a variant (a flexible data type in VBA that can hold various types of data, including
strings, numbers, and objects). The function returns a Boolean value (True if the key is
found in the collection, False if it's not found).

On Error Resume Next: This statement is used to handle runtime errors. It essentially
tells VBA to continue executing the code if an error occurs instead of halting the program.

col.ltem key: This line tries to access an item in the collection (col) using the provided
key (key). If the key exists in the collection, this line will execute successfully; otherwise,
it will generate an error.

Contains = (Err.Number = 0): After attempting to access the item, the code checks if an
error occurred (Err.Number). If there was no error (meaning the key exists in the
collection), it sets Contains to True. If an error occurred (meaning the key doesn't exist),
it sets Contains to False.

Err.Clear: This line clears any error information that may have been generated during the
execution of the code.

On Error GoTo 0: This statement resets the error handling behavior to its default state,
which means that errors will once again halt the program rather than being ignored.

In summary, this Contains function allows you to check if a particular key exists in a
collection without causing an error if the key is not found. It's a useful utility function for
working with collections in VBA, especially when you want to avoid runtime errors related
to missing keys.

Line by line Coding descriptions: (Copy and Paste)

Private Sub Year2018_ Click()
SalesYear = "2018"
YearlySales

End Sub

Private Sub Year2019 Click()
SalesYear = "2019"
YearlySales

End Sub

Private Sub Year2020_Click()
SalesYear = "2020"
YearlySales

End Sub

Private Sub Year2021 Click()
SalesYear = "2021"
YearlySales

End Sub

Private Sub Year2022_Click()
SalesYear = "2022"

YearlySales

End Sub

These code snippets are event handlers for various buttons, most likely used in a user
interface, where each button corresponds to a specific year (e.g., 2018, 2019, etc.). When
a button is clicked, it sets the SalesYear variable to the corresponding year and then calls
the YearlySales subroutine or function. Here's what each of these code snippets does:

Private Sub Year2018_ Click(): This is an event handler for a button labeled "Year2018."
When this button is clicked, it sets the SalesYear variable to "2018" and then calls the
YearlySales subroutine or function.

Private Sub Year2019_ Click(): Similar to the previous one, but it sets SalesYear to "2019."
Private Sub Year2020_Click(): Sets SalesYear to "2020" when the button is clicked.
Private Sub Year2021_Click(): Sets SalesYear to "2021" when the button is clicked.
Private Sub Year2022_Click(): Sets SalesYear to "2022" when the button is clicked.

These event handlers are typically used in a graphical user interface (GUI) application,
such as a VBA UserForm in Microsoft Excel, to allow the user to select a specific year of
interest. When a year button is clicked, it triggers an action (in this case, calling the
YearlySales subroutine) that typically updates some display or performs calculations
related to the selected year. The exact functionality of the YearlySales subroutine would
depend on the rest of your VBA code.

Line by line Coding descriptions: (Copy and Paste)

Private Sub SR1_Click()
SalesSr = "SR1"
NameofSR = "Sandeep Sarvahi"
YearlySRSales

End Sub

Private Sub SR2_Click()
SalesSr = "SR2"

NameofSR = "Poonam Dixit"

YearlySRSales

End Sub
Private Sub SR3_Click()
SalesSr = "SR3"

NameofSR = "Anjali Rathore"
YearlySRSales

End Sub

Private Sub SR4_Click()
SalesSr = "SR4"
NameofSR = "Rafikul Ahamed"
YearlySRSales

End Sub

Private Sub SR5_Click()
SalesSr = "SR5"
NameofSR = "Manoj Dubay"
YearlySRSales

End Sub

Private Sub SR6_Click()
SalesSr = "SR6"
NameofSR = "K.K.Krishnamurthy"
YearlySRSales

End Sub

These code snippets appear to be event handlers for buttons or controls associated with
different sales representatives (SRs). When one of these buttons is clicked, it sets the
SalesSr and NameofSR variables to specific values and then calls the YearlySRSales
subroutine or function. Here's what each of these code snippets does:

Private Sub SR1_Click(): This is an event handler for a button associated with SR1
(Sales Representative 1). When this button is clicked, it sets the SalesSr variable to "SR1"

and the NameofSR variable to "Sandeep Sarvahi,” and then calls the YearlySRSales
subroutine or function.

Private Sub SR2_Click(): Similar to the previous one, but it sets SalesSr to "SR2" and
NameofSR to "Poonam Dixit."

Private Sub SR3_Click(): This one is for SR3, setting SalesSr to "SR3" and NameofSR
to "Anjali Rathore."

Private Sub SR4_Click(): For SR4, setting SalesSr to "SR4" and NameofSR to "Rafikul
Ahamed."

Private Sub SR5_Click(): This one is for SR5, setting SalesSr to "SR5" and NameofSR
to "Manoj Dubay."

Private Sub SR6_Click(): For SR6, setting SalesSr to "SR6" and NameofSR to
"K.K.Krishnamurthy."

These event handlers are typically used in a graphical user interface (GUI) application,
such as a VBA UserForm in Microsoft Excel. They allow the user to select a specific sales
representative, and when a sales representative button is clicked, it triggers an action (in
this case, calling the YearlySRSales subroutine) that likely displays or analyzes sales
data specific to the selected sales representative. The exact functionality of the
YearlySRSales subroutine would depend on the rest of your VBA code.

Line by line Coding descriptions: (Copy and Paste)

Only Change the Excel sheet Col Reference

Private Sub SalesAsltemList()

' This event handler runs when an Option Button is clicked.

' Define variables

'Dim ws As Worksheet

'Dim LastRow As Long

Dim ListBoxData As Object
Dim AddedItems As Collection
Dim TotalRecordsYear As Long

Dim TotalAmountYear As Double

ListBox2.Visible = False

ListBox1.Visible = True

' Set the worksheet and last row

Set ws = ThisWorkbook.Worksheets("TempData")

LastRow = ws.Cells(ws.Rows.Count, "L").End(xIUp).row

' Clear the ListBox
Set ListBoxData = Me.ListBox1

ListBoxData.Clear

' Create a collection to keep track of added items

Set Addedltems = New Collection

TotalRecordsYear =0

TotalAmountYear =0

' Loop through the data and populate the ListBox with unique rows where Column I is "No"
Dimi As Long

Dim RowData As Range

Fori=1To LastRow
If ws.Cells(i, WsColRef).value = ItemListClick Then ' Assuming Column | contains "Yes" or "No"
' Define a fixed range for RowData that includes all columns you want to display

Set RowData = ws.Range("A" & i & ":L" & i) ' Adjust the range as needed

' Convert the 2D array to a 1D array of strings
Dim rowDataArray() As Variant

Dim j As Long

ReDim rowDataArray(1 To 1, 1 To RowData.Columns.Count)

For j =1 To RowData.Columns.Count
rowDataArray(1, j) = RowData.Cells(1, j).value

Next j

' Join the data and add it to the ListBox
Dim ItemKey As String

IltemKey = Join(Application.index(rowDataArray, 1, 0), vbTab)

If Not Contains(Addedltems, ItemKey) Then
ListBoxData.AddItem ItemKey
AddedlItems.Add ItemKey, ItemKey ' Add the item to the collection
TotalRecordsYear = TotalRecordsYear + 1
TotalAmountYear = TotalAmountYear + ws.Cells(i, "D").value ' Assuming Amount is in column E

End If

End If

Next i

' Update labels with the total counts and amounts
Label2.caption = "Total Records Found " & TotalRecordsYear

TotAmt.caption = "Amount Sales for " & ItemListClick & " of Rs. " & Format(TotalAmountYear,
"H#it, ##0.00")

End Sub

Line by line Coding descriptions: (Copy and Paste)

Private Sub PicturelLoad()

Dim x As Long
Forx =1 To 220000
DoEvents ' Allow the userform to update
' Check if i is a multiple of 50,000
If x Mod 20000 = 0 Then
' Change the picture based on the current value of i
Select Case x
Case 20000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_02.jpg")
Frame4.BackColor = vbMagenta
Label10.BackColor = vbMagenta
Label10.ForeColor = vbBlack
Case 40000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_03.jpg")
Label10.caption = "Photography is the story | fail to put into words"
Frame4.BackColor = vbPurple
Label10.BackColor = vbPurple
Label10.ForeColor = vbYellow
Case 60000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_04.jpg")
Frame4.BackColor = vbRed
Label10.BackColor = vbRed
Label10.ForeColor = vbYellow
Case 80000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_05.jpg")
Label10.caption = "Today everything exists to end in a photograph"

Frame4.BackColor = vbBlack

Label10.BackColor = vbBlack
Label10.ForeColor = vbWhite
Case 100000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_06.jpg")
Frame4.BackColor = vbWhite
Label10.BackColor = vbWhite
Label10.ForeColor = vbBlack
Case 120000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_07.jpg")
Label10.caption = "Photography is a love affair with life"
Frame4.BackColor = vbRed
Label10.BackColor = vbRed
Label10.ForeColor = vbYellow
Case 140000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_08.jpg")
Frame4.BackColor = vbBlue
Label10.BackColor = vbBlue
Label10.ForeColor = vbWhite
Case 160000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_09.jpg")
Labell0.caption = "The best camera is the one that’s with you"
Frame4.BackColor = vbGreen
Labell0.BackColor = vbGreen
Label10.ForeColor = vbBlue
Case 180000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_10.jpg")
Frame4.BackColor = vbYellow
Label10.BackColor = vbYellow

Label10.ForeColor = vbRed

Case 200000
ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_11.jpg")
Label10.caption = "You don’t take a photograph, you make it"
Frame4.BackColor = vbRed
Label10.BackColor = vbRed
Label10.ForeColor = vbYellow

Case Else
"Handle other cases if necessary

End Select
End If

Next x

ImageProgress.Picture = LoadPicture("E:\Chennai_Tours\Excel_Picture\Chennai_01.jpg")

End Sub

This code defines a subroutine called PictureLoad, which seems to be used for loading
and displaying a series of images in a user interface, possibly in a VBA UserForm. Let's
break down what this code does step by step:

Loop Through a Range: The code starts with a For loop that runs from 1 to 220,000.
Inside this loop, there's a DoEvents statement. DoEvents is used to allow the user
interface to update while the loop is running, which is useful for preventing the interface
from becoming unresponsive during long operations.

Check for Specific Values: Within the loop, there's an If statement that checks if the
loop variable x is a multiple of 20,000 (e.g., 20,000, 40,000, 60,000, and so on). When x
meets this condition, it enters a Select Case statement.

Select Case Statement: Depending on the value of X, a specific set of actions is taken.
Here's a breakdown of what happens in each case:

For example, when x is 20,000, it changes the picture displayed in an ImageProgress
control to "Chennai_02.jpg" and sets background and text colors for some other controls
(Frame4 and Label10).

Similarly, for other cases, it changes the displayed image, and in some cases, it also
updates the caption and colors of other controls.

Final Image Setting: After the loop completes (when x reaches 220,000), it sets the
ImageProgress control's picture back to "Chennai_01.jpg".

This code appears to create a visual effect where a series of images are displayed
sequentially, along with changes in background and text colors for certain controls. The
actual images and color changes are based on the value of x. The specific purpose and
context of this code would depend on the overall design and functionality of the user
interface it's a part of.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Py

Gautam Banenee Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

Pay by Google Pay
0748327614

Summary:

This project appears to have significant learning value, especially for
individuals looking to improve their VBA (Visual Basic for Applications)
programming skills for Excel. Here's a breakdown of the learning value and
what you can potentially learn from this project:

UserForm Interaction: The project uses a UserForm, which is a
fundamental concept in VBA for creating custom Excel interfaces. You can
learn how to create UserForms, add controls (like buttons, list boxes, labels,
etc.), and respond to events triggered by these controls.

Data Handling: It involves working with Excel data. You can learn how to
read data from worksheets, populate ListBox controls with data from Excel,
and manipulate data based on user interactions.

Working with Collections: The code uses collections to manage data
efficiently. You can learn how to use collections for storing and managing
data, which is a crucial skill for optimizing VBA code.

Dictionary Object: The code uses a Scripting.Dictionary object to create a
key-value data structure. You can learn how to use dictionaries for data
lookup and storage.

Conditional Logic: There are numerous conditional statements (If-Then-
Else, Select Case) used to make decisions based on certain conditions. This
Is essential for controlling the flow of your VBA code.

Error Handling: It includes error handling using On Error Resume Next and
On Error GoTo 0. Error handling is crucial for making your code robust and
handling unexpected issues gracefully.

File Operations: The code loads pictures from specific file paths. You can
learn about file operations in VBA, including loading images into UserForms.

Looping: The code uses loops (For...Next) to perform repetitive tasks
efficiently. Understanding loops is essential for processing large amounts of
data.

Event Handling: The code responds to various events triggered by
UserForm controls, such as button clicks and list box selections. Learning
how to handle events is a key aspect of UserForm design.

String Manipulation: The code performs string manipulation operations,
such as joining strings and checking for substrings. These skills are handy
for text processing.

Data Filtering: The project filters and displays data based on various criteria
(e.g., year, sales representative, product). You can learn how to filter and
display specific data from a larger dataset.

Message Boxes: Message boxes are used to provide feedback to the user.
You can learn how to display messages and information to users.

Dynamic Image Loading: The project demonstrates how to dynamically
load and change images in a UserForm. This can be useful for creating
dynamic interfaces.

Modular Code: The code is modular, with separate procedures for specific
tasks. This promotes code organization and reusability.

Variable Handling: It uses different types of variables (String, Long, Object)
for storing and manipulating data. You can learn about variable types and
their usage.

Comments: The code includes comments that explain the purpose of
functions and procedures, making it more readable and understandable. You
can learn the importance of code documentation.

In summary, this project provides a practical example of building a user-
friendly Excel interface using VBA. By studying and modifying this code, you
can gain valuable insights into creating interactive Excel applications and
enhance your VBA programming skills, especially in areas like UserForms,
data manipulation, and event handling.

