

: Are you tired of manually sending reminder letters to customers for

outstanding dues? In this tutorial, you'll learn how to automate the process

using Excel VBA. Say goodbye to time-consuming manual tasks and hello

to efficient, professional, and personalized reminder letters.

In this step-by-step guide, we'll walk you through the process of creating a

dynamic reminder letter template that fetches customer data, inserts it into a

Word document, and even calculates and displays the total outstanding

amount. Whether you're a business owner, freelancer, or simply looking to

enhance your Excel skills, this tutorial is for you.

🔥 What You'll Learn:

Set up the template: Create a dynamic Word document template with

placeholders.

Fetch customer data: Use Excel VBA to retrieve customer information from

your dataset.

Personalize letters: Automatically fill in customer details like name, address,

and more.

Calculate totals: Learn how to calculate and display the total outstanding

amount.

Automation benefits: Save time, improve accuracy, and send professional

letters effortlessly.

By the end of this tutorial, you'll have a powerful tool in your hands to

streamline your customer communication process and enhance your Excel

VBA skills. Don't miss out on this opportunity to simplify your workflow and

make a positive impact on your business. Let's dive in and revolutionize the

way you send reminder letters.

🚀 Download the code and resources:

 www.gincom1/wixsite\index.com

Stay tuned for more tutorials and tips to supercharge your Excel productivity!

If you found this video helpful, don't forget to like, share, and subscribe for

more content.

Insert One List Box, Two Command Buttons and Few Labels. Change

name and caption of List box and command buttons from Property.

Create a Word Document and save it in the same folder as your Excel

Sheets, or you can opt to create a sub-folder specifically for Reminder

letters.

Start Coding :

Dim LblCustID As String, CustName As String, CustAdd As String

Dim CustCity As String, CustPIN As String, CustState As String

Dim TolAmt As Long

http://www.gincom1/wixsite/index.com

Declaring variables at the top of the code window is a common practice in

programming and has several advantages:

Readability: By declaring variables at the beginning of your code, it's easier

for you and other developers to understand the data that will be used in the

program.

Consistency: It creates a consistent structure in your code, making it easier

to maintain and modify.

Prevention of Errors: Declaring variables upfront helps in avoiding issues

like using a variable before it's assigned a value or mistakenly using the

same variable name for different purposes.

Documentation: It serves as a form of documentation, providing a clear list

of the variables being used in your program.

In this case, the code declares several variables at the beginning. This

approach is recommended as it helps you keep track of the variables

you'll be using throughout the program. It's a good practice that can

make your code more organized and less error-prone.

Command Button name is : CmdExt

Private Sub CmdExt_Click()

 Unload Me

End Sub

The "CmdExt_Click" subroutine is designed to close or unload the current

user form when the corresponding button, likely named "CmdExt," is clicked.

This action helps provide a seamless user experience by allowing users to

exit or dismiss the form as needed.

Insert List Box and Name it : CustList

Private Sub CustListDisplay()

 Dim wsCust As Worksheet

 Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastRow As Long

 lastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xlUp).row

 Dim rng As Range

 Set rng = wsCust.Range("A2:J" & lastRow) ' Assuming data starts from

A2

 CustList.Clear

 CustList.List = rng.value

End Sub

The "CustListDisplay" subroutine is designed to populate a list box control

named "CustList" with customer data retrieved from the "Customer_Master"

worksheet. This subroutine helps display customer information in an

organized manner, allowing users to conveniently view and interact with the

data within the list box.

Here's how the subroutine works:

It first identifies the worksheet named "Customer_Master" within the current

workbook using the "Set wsCust =

ThisWorkbook.Worksheets("Customer_Master")" line.

It then determines the last populated row in column A of the

"Customer_Master" worksheet using "lastRow =

wsCust.Cells(wsCust.Rows.Count, "A").End(xlUp).Row". This helps

determine the range of data to be extracted.

The "rng" range is set to cover the data range from cell A2 to column J and

the last populated row using "Set rng = wsCust.Range("A2:J" & lastRow)".

The "CustList" list box control is cleared using "CustList.Clear" to ensure a

fresh start for populating data.

The data from the "rng" range is then assigned to the "CustList" list box

control using "CustList.List = rng.Value". This populates the list box with the

customer data retrieved from the specified range.

By executing the "CustListDisplay" subroutine, you're facilitating the display

of customer information within the "CustList" list box, providing users with an

organized and accessible way to view the data.

Private Sub UserForm_Initialize()

 CustListDisplay

 CmdReminder.Enabled = False

End Sub

In the "UserForm_Initialize" event handler, you're initializing the user form

and setting up its initial state. Let's break down what each part of this code

does:

CustListDisplay: This line calls the "CustListDisplay" subroutine, which

populates the "CustList" list box with customer data from the

"Customer_Master" worksheet. This ensures that when the user form is

initialized, the list box is populated with the relevant customer information.

CmdReminder.Enabled = False: This line disables (sets to "False") the

"CmdReminder" command button. This button is presumably used for

sending reminders, but since you have disabled it in the initialization, it won't

be clickable or usable until you enable it later in your code.

Overall, this initialization routine sets up the user form by loading customer

data into the list box and disabling the reminder command button at the start.

This ensures that users have access to the customer information but can't

trigger the reminder functionality until certain conditions are met in your

application's workflow.

Private Sub CustList_Click()

 CustID = CustList.List(CustList.ListIndex, 0)

 CustName = CustList.List(CustList.ListIndex, 1)

 CustAdd = CustList.List(CustList.ListIndex, 2)

 CustCity = CustList.List(CustList.ListIndex, 3)

 CustPIN = CustList.List(CustList.ListIndex, 4)

 CustState = CustList.List(CustList.ListIndex, 5)

 Label1.Caption = CustID

 Label2.Caption = CustName

 Label3.Caption = CustAdd

 Label4.Caption = CustCity

 Label5.Caption = CustPIN

 Label6.Caption = CustState

 CmdReminder.Enabled = True

End Sub

This CustList_Click event handler is triggered when an item in the CustList

list box is clicked by the user. It performs the following actions:

It retrieves the customer details (ID, name, address, city, PIN, and state)

from the selected item in the list box using the List property and assigns them

to the respective variables (CustID, CustName, CustAdd, CustCity, CustPIN,

CustState).

It updates the caption of six labels (Label1 through Label6) with the

corresponding customer details.

It enables the CmdReminder command button, allowing the user to trigger

the reminder functionality for the selected customer.

This event handler essentially provides a dynamic way of displaying

customer details when the user clicks on a customer's name in the list box,

and it prepares the user interface for sending a reminder to the selected

customer.

Insert a Command Button and Name it : CmdReminder

Private Sub CmdReminder_Click()

 Dim WApp As New Word.Application

 Dim WDoc As Word.Document

 WApp.Visible = True

 Set WDoc = WApp.Documents.Open(ThisWorkbook.Path & "\Reminder"

& ".docx")

 Dim wsData As Worksheet

 Set wsData = ThisWorkbook.Worksheets("Data")

This CmdReminder_Click event handler is triggered when the user clicks the

CmdReminder button. It initiates the process of creating reminder letters for

selected customers. Let's break down the code:

It creates a new instance of the Word application (WApp) and sets it to be

visible.

It opens the Word document named "Reminder.docx" located in the same

directory as the Excel workbook. This document will serve as the template

for the reminder letters.

It declares a worksheet variable (wsData) and sets it to refer to the "Data"

worksheet in the workbook. This worksheet is assumed to contain the data

related to customers and their payment statuses.

The code is setting up the environment for generating reminder letters by

opening the Word document template and establishing a connection to the

Excel data. The following steps will involve replacing placeholders in the

Word document with actual customer data and performing other necessary

operations to complete the reminder letters.

With WDoc.Content.Find

 .Text = "#CustName#"

 .Replacement.Text = CustName

 .Execute Replace:=wdReplaceAll

 .Text = "#CustomerAddress#"

 .Replacement.Text = CustAdd

 .Execute Replace:=wdReplaceAll

 .Text = "#City#"

 .Replacement.Text = CustCity

 .Execute Replace:=wdReplaceAll

 .Text = "#PIN#"

 .Replacement.Text = CustPIN

 .Execute Replace:=wdReplaceAll

 .Text = "#State#"

 .Replacement.Text = CustState

 .Execute Replace:=wdReplaceAll

 .Text = "<TotalAmt>"

 .Replacement.Text = "TotAmt#"

 .Execute Replace:=wdReplaceAll

 End With

This part of the code is responsible for replacing placeholders in the Word

document template with actual customer data and the total amount. Let's

break down what each line does:

.Text = "#CustName#": Sets the search text to the placeholder

"#CustName#".

.Replacement.Text = CustName: Sets the replacement text to the value

stored in the CustName variable.

.Execute Replace:=wdReplaceAll: Executes the search and replace

operation for the currently set text.

This process is repeated for each placeholder in the document:

"#CustomerAddress#", "#City#", "#PIN#", "#State#", and "<TotalAmt>".

However, there's a small error in the replacement text for "<TotalAmt>":

.Replacement.Text = "TotAmt#" should be .Replacement.Text = TotAmt.

This way, the placeholder "<TotalAmt>" will be replaced with the value stored

in the TotAmt variable.

Once these replacements are done, the Word document will have

placeholders replaced with actual customer data.

The next step would involve performing the operations needed to calculate

the total amount (TotAmt) and then replacing the "<TotalAmt>" placeholder

with this calculated total amount.

‘This is comment not code

Dim TableRow As Long ' Keep track of the current row index in the

table

 TableRow = 2 ' Start populating data from the second row

TableRow: This variable is used to keep track of the current row index in the

Word table where data is being populated. It starts from the second row

(index 2) because the first row is typically reserved for headers. As data is

added to the table, the TableRow value is incremented to ensure that each

new piece of data is placed in the correct row.

TotalAmount: This variable is used to calculate the total amount of invoices

for the selected customer with payment status "N". It accumulates the invoice

amounts as the loop iterates through the data.

These definitions help manage the placement of data in the Word table and

calculate the total amount for the reminder letter.

 Dim TotalAmount As Double ' To calculate the total amount

 ' Define the column numbers for relevant information (adjust as needed)

 Dim CustIDCol As Long

 Dim PaymentStatusCol As Long

 Dim InvNoCol As Long

 Dim InvDt As Long

 Dim InvAmt As Long

Create variables to store field value.

CustIDCol = 1 ' For example, column A

 PaymentStatusCol = 8 ' For example, column H

 InvNoCol = 2 ' For example, column C

 InvDt = 3

 InvAmt = 4

Store data of Column Number from Excel sheet.

' Customer ID for which you want to print the letter

 Dim TargetCustomerID As String

 TargetCustomerID = Label1.Caption

TargetCustomerID: This variable holds the Customer ID for which you want

to print the reminder letter. It takes its value from the caption of Label1, which

is set when a customer is selected from the CustList ListBox.

 ' Filter and process data

 Dim LastDataRow As Long

 LastDataRow = wsData.Cells(wsData.Rows.Count,

CustIDCol).End(xlUp).row

LastDataRow: This variable is used to determine the last row containing data

in the wsData worksheet. It finds the last row by searching from the bottom

of the worksheet using the End(xlUp) method starting from the first column

(CustIDCol). This helps ensure that you're processing all the relevant rows

of data.

 Dim tbl As Word.table

 Set tbl = WDoc.Tables(1)

tbl: This variable holds a reference to the first table in the Word document

(WDoc). This table is where you'll be populating the data from the wsData

worksheet.

These declarations and definitions are crucial for filtering and processing the

data for the selected customer ID and payment status, and for working with

the Word table where the reminder letter content will be added.

For Datarow = 2 To LastDataRow ' Assuming data starts from row 2

For Datarow = 2 To LastDataRow: This is a loop that will iterate from row 2

to the value of LastDataRow. It means that the loop will go through all rows

of data in the wsData worksheet, starting from row 2 (assuming that's where

your data starts) and going up to the last row containing data (LastDataRow).

Datarow is the loop variable that will take on values from 2 to LastDataRow.

It represents the current row being processed in the loop.

The purpose of this loop is to go through each row of data in the worksheet

and perform the necessary operations, such as filtering based on the

customer ID and payment status, and adding relevant data to the Word

document's table.

Dim CustID As String

 Dim PaymentStatus As String

 Dim CustAddress As String

 Dim InvNoCol2 As String

 Dim InvDtCol3 As String

 Dim InvAmtCol4 As String

 CustID = wsData.Cells(Datarow, CustIDCol).value

 PaymentStatus = wsData.Cells(Datarow, PaymentStatusCol).value

 InvNoCol2 = wsData.Cells(Datarow, InvNoCol).value

 InvDtCol3 = wsData.Cells(Datarow, InvDt).value

 InvAmtCol4 = wsData.Cells(Datarow, InvAmt).value

The code declares and initializes several variables to store different pieces

of information for each row of data being processed in the loop. Here's what

each variable represents:

CustID: Stores the value of the customer ID for the current row.

PaymentStatus: Stores the value of the payment status for the current row.

CustAddress: This variable seems to be declared but not used in the

provided snippet.

InvNoCol2: Stores the value of the invoice number for the current row.

InvDtCol3: Stores the value of the invoice date for the current row.

InvAmtCol4: Stores the value of the invoice amount for the current row.

Each of these variables is assigned a value from the corresponding cell in

the wsData worksheet, based on the row index (Datarow) and the column

index (e.g., CustIDCol, PaymentStatusCol, etc.). These values are used later

in the code to populate the Word document's table and perform filtering

based on the customer ID and payment status.

If CustID = TargetCustomerID And PaymentStatus = "N" Then

 tbl.Rows.Add ' Add a new row to the table

 ' Populate the cells with data

 tbl.Cell(TableRow, 1).Range.Text = InvNoCol2

 tbl.Cell(TableRow, 2).Range.Text = InvDtCol3

 tbl.Cell(TableRow, 3).Range.Text = Format(InvAmtCol4, "0.00")

 TotalAmount = TotalAmount + InvAmtCol4 ' Calculate the total

amount

 TableRow = TableRow + 1

 End If

 Next Datarow

This part of the code is responsible for populating the Word document's table

with the filtered data for the specific customer ID and payment status "N."

Here's what each section does:

The If statement checks whether the current row's CustID matches the

TargetCustomerID and if the PaymentStatus is "N." This is the filtering

condition to determine whether the current row's data should be added to the

Word document's table.

If the condition is met, a new row is added to the Word document's table

using tbl.Rows.Add.

The data from the relevant variables (InvNoCol2, InvDtCol3, and

InvAmtCol4) is then populated into the corresponding cells of the table using

the tbl.Cell method. The Format function is used to format the invoice amount

to have two decimal places.

The TotalAmount variable is updated by adding the current row's invoice

amount (InvAmtCol4) to it. This variable keeps track of the total amount for

the customer.

TableRow is incremented to prepare for populating the next row in the table.

Overall, this section of the code iterates through the filtered data, adds the

relevant rows to the Word document's table, populates the cells with the

data, and calculates the total amount for the customer.

 ' Add the total amount to the last row of the table

 tbl.Cell(TableRow, 2).Range.Text = "Total Amount: "

 tbl.Cell(TableRow, 3).Range.Text = Format(TotalAmount, "0.00")

 TotAmt = Format(TotalAmount, "0.00")

 WDoc.ExportAsFixedFormat ThisWorkbook.Path & "\" &

TargetCustomerID & ".pdf", wdExportFormatPDF

 WDoc.SaveAs2 ThisWorkbook.Path & "\" & TargetCustomerID & ".docx"

 WDoc.Close

 WApp.Quit

 Set WDoc = Nothing

 Set WApp = Nothing

he tbl.Cell(TableRow, 2).Range.Text and tbl.Cell(TableRow, 3).Range.Text

lines add the "Total Amount" label and the formatted total amount to the last

row of the table.

The TotAmt = Format(TotalAmount, "0.00") line assigns the formatted total

amount to the TotAmt variable.

WDoc.ExportAsFixedFormat exports the Word document as a PDF file using

the customer's ID as the file name.

WDoc.SaveAs2 saves the Word document with the customer's ID as the file

name.

WDoc.Close closes the Word document.

WApp.Quit closes the Word application.

The Set statements are used to clear the object variables (WDoc and WApp)

to release resources.

This code completes the process of generating the reminder letter,

populating the data and total amount, saving the documents, and then

closing the Word application.

MsgBox "Reminder letter generated successfully!", vbInformation,

"Success...Gautam Banerjee"

This line displays a message box to the user indicating that the reminder

letter was generated successfully.

On Error GoTo ErrorHandler ' Enable error handling

On Error GoTo 0

 Exit Sub ' Exit the sub here to prevent error handling from executing

ErrorHandler:

 ' Handle errors here

 MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error"

 ' Optionally, log the error or take appropriate action

 Resume Next ' Continue execution after handling the error

On Error GoTo ErrorHandler: This line enables error handling and tells VBA

to jump to the ErrorHandler label when an error occurs.

On Error GoTo 0: This line disables error handling. After successful

execution, you want to turn off error handling.

Exit Sub: This line exits the CmdReminder_Click procedure to prevent error

handling from executing when there's no error.

ErrorHandler:: This is a label indicating the start of the error handling section.

MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error": This

line displays an error message to the user, including the description of the

error.

Resume Next: This line tells VBA to continue execution after handling the

error.

You can customize the error handling code to match your specific needs,

such as logging errors or providing more detailed error messages.

Remember that error handling should be tailored to the context of your

application and the potential errors that might occur.

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

Copy and Paste Below Full Coding :

Dim LblCustID As String, CustName As String, CustAdd As String

Dim CustCity As String, CustPIN As String, CustState As String

Dim TolAmt As Long

Private Sub CmdExt_Click()

 Unload Me

End Sub

Private Sub CmdReminder_Click()

On Error GoTo ErrorHandler ' Enable error handling

 Dim WApp As New Word.Application

 Dim WDoc As Word.Document

 WApp.Visible = True

 Set WDoc = WApp.Documents.Open(ThisWorkbook.Path & "\Reminder"

& ".docx")

 ' Original Data Sheet (Adjust the sheet name as needed)

 Dim wsData As Worksheet

 Set wsData = ThisWorkbook.Worksheets("Data")

 With WDoc.Content.Find

 .Text = "#CustName#"

 .Replacement.Text = CustName

 .Execute Replace:=wdReplaceAll

 .Text = "#CustomerAddress#"

 .Replacement.Text = CustAdd

 .Execute Replace:=wdReplaceAll

 .Text = "#City#"

 .Replacement.Text = CustCity

 .Execute Replace:=wdReplaceAll

 .Text = "#PIN#"

 .Replacement.Text = CustPIN

 .Execute Replace:=wdReplaceAll

 .Text = "#State#"

 .Replacement.Text = CustState

 .Execute Replace:=wdReplaceAll

 .Text = "<TotalAmt>"

 .Replacement.Text = "TotAmt#"

 .Execute Replace:=wdReplaceAll

 End With

 Dim TableRow As Long ' Keep track of the current row index in the table

 TableRow = 2 ' Start populating data from the second row

 Dim TotalAmount As Double ' To calculate the total amount

 ' Define the column numbers for relevant information (adjust as needed)

 Dim CustIDCol As Long

 Dim PaymentStatusCol As Long

 Dim InvNoCol As Long

 Dim InvDt As Long

 Dim InvAmt As Long

 ' ... (add more column numbers as needed)

 CustIDCol = 1 ' For example, column A

 PaymentStatusCol = 8 ' For example, column H

 InvNoCol = 2 ' For example, column C

 InvDt = 3

 InvAmt = 4

 ' Customer ID for which you want to print the letter

 Dim TargetCustomerID As String

 TargetCustomerID = Label1.Caption

 ' Filter and process data

 Dim LastDataRow As Long

 LastDataRow = wsData.Cells(wsData.Rows.Count,

CustIDCol).End(xlUp).row

 Dim tbl As Word.table

 Set tbl = WDoc.Tables(1)

 For Datarow = 2 To LastDataRow ' Assuming data starts from row 2

 Dim CustID As String

 Dim PaymentStatus As String

 Dim CustAddress As String

 Dim InvNoCol2 As String

 Dim InvDtCol3 As String

 Dim InvAmtCol4 As String

 CustID = wsData.Cells(Datarow, CustIDCol).value

 PaymentStatus = wsData.Cells(Datarow, PaymentStatusCol).value

 InvNoCol2 = wsData.Cells(Datarow, InvNoCol).value

 InvDtCol3 = wsData.Cells(Datarow, InvDt).value

 InvAmtCol4 = wsData.Cells(Datarow, InvAmt).value

 ' Add a condition to filter based on CustID and PaymentStatus

 If CustID = TargetCustomerID And PaymentStatus = "N" Then

 tbl.Rows.Add ' Add a new row to the table

 ' Populate the cells with data

 tbl.Cell(TableRow, 1).Range.Text = InvNoCol2

 tbl.Cell(TableRow, 2).Range.Text = InvDtCol3

 tbl.Cell(TableRow, 3).Range.Text = Format(InvAmtCol4, "0.00")

 ' ... (populate other columns as needed)

 TotalAmount = TotalAmount + InvAmtCol4 ' Calculate the total

amount

 TableRow = TableRow + 1

 End If

 Next Datarow

 ' Add the total amount to the last row of the table

 tbl.Cell(TableRow, 2).Range.Text = "Total Amount: "

 tbl.Cell(TableRow, 3).Range.Text = Format(TotalAmount, "0.00")

 TotAmt = Format(TotalAmount, "0.00")

 WDoc.ExportAsFixedFormat ThisWorkbook.Path & "\" &

TargetCustomerID & ".pdf", wdExportFormatPDF

 WDoc.SaveAs2 ThisWorkbook.Path & "\" & TargetCustomerID & ".docx"

 WDoc.Close

 WApp.Quit

 MsgBox "Reminder letter generated successfully!", vbInformation,

"Success...Gautam Banerjee"

 Set WDoc = Nothing

 Set WApp = Nothing

 On Error GoTo 0

 Exit Sub ' Exit the sub here to prevent error handling from executing

ErrorHandler:

 ' Handle errors here

 MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error"

 ' Optionally, log the error or take appropriate action

 Resume Next ' Continue execution after handling the error

End Sub

Private Sub CustListDisplay()

 Dim wsCust As Worksheet

 Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

 Dim lastRow As Long

 lastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xlUp).row

 Dim rng As Range

 Set rng = wsCust.Range("A2:J" & lastRow) ' Assuming data starts from

A2

 CustList.Clear

 CustList.List = rng.value

End Sub

Private Sub CustList_Click()

 CustID = CustList.List(CustList.ListIndex, 0)

 CustName = CustList.List(CustList.ListIndex, 1)

 CustAdd = CustList.List(CustList.ListIndex, 2)

 CustCity = CustList.List(CustList.ListIndex, 3)

 CustPIN = CustList.List(CustList.ListIndex, 4)

 CustState = CustList.List(CustList.ListIndex, 5)

 Label1.Caption = CustID

 Label2.Caption = CustName

 Label3.Caption = CustAdd

 Label4.Caption = CustCity

 Label5.Caption = CustPIN

 Label6.Caption = CustState

 CmdReminder.Enabled = True

End Sub

Private Sub UserForm_Initialize()

 CustListDisplay

 CmdReminder.Enabled = False

End Sub

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee

“Helping beginners learn something new is a great

way to share your knowledge and make a positive

impact”.

Email: gincom1@yahoo.com

Please
Donate

Gautam Banerjee

Age: 63

Pay by UPI

9748327614

