Customer Data Sheet, To print reminder letter select customer from List Box
AD1 ABC Mabiles 123 Main Stre Mumbas 400001 Madarashira sbobgmailoo 1988674157 SR1
Dol DEF Blactronk 111 South Rac Myderabad 500003 Tel et ilcot M SRe f
oL GMI Moblles 222 East Strew Kolata 700001 West Bangad gh@gmad.coe 7361222945 SR2 XYZ Bctronics
Jo1 KL Bectronic 333 North Row Puse 411003 Madarasbtrs |Mdgmalcon 2406832630 SR1
MOl MNO Moblles 444 West Stre Delbi 110001 Db moolgmailoc 6226954813 SRS 456 High Street
POl PQR Mobdes 789 Cantral & Chennal 02008 Tamil Madu porDomadoonr 2046840782 SRE Bangalcre-£60001
S0 STU Blectronk 555 South Ra: Mumba 400001 Madarashera stugeailcor 5977599692 SR1
Vo1 VWX Mobiles 664 High Stre Bang 560003 Karnataka vwilg 8701984848 SR3 arnatana
X01 XYZ Ehectrons_ 456 Hioh Stre o 563001 Karnataka o 3401683163 A3 Subgoct: Remindar o Cloer Ovintaing B
Yo: YIB hectronk 777 Central B Chennai 600001 Tamil Nadu yrb@gmailco 2522852531 SRE
We wrmswan Tt Baws raghd e & w o P ol £ ey s Pug eyt
et e s e wroct® foc T mEer 8 waty
» Rt We A i poe W ini Pe Yoiweng ewiiandey W o
Customer Oetalls b : y
x01 — e ey ——
Download m B 1900008
Reminder Letter XYZ Electronics fi8222
.—, 7 Free Pdf File W 510y 1oe e
456 High Street ~wan v 15350 08
Close Form Bangalore ~Nh S 2008 13100 38
J D db o = [T
560001 eV dop" A L Do (ST
Xarnataka Gautam Banerjee ot ket wezon
We K0k Wreed 5 Mty W Py Deceios sarates Yeo gt
CrTeAe TmaeT) S 0Lea w te Sy atpRe e

Automate Customer Reminder Letters with Excel VBA
Create Professional Letters with Code

. Are you tired of manually sending reminder letters to customers for
outstanding dues? In this tutorial, you'll learn how to automate the process
using Excel VBA. Say goodbye to time-consuming manual tasks and hello
to efficient, professional, and personalized reminder letters.

In this step-by-step guide, we'll walk you through the process of creating a
dynamic reminder letter template that fetches customer data, inserts it into a
Word document, and even calculates and displays the total outstanding
amount. Whether you're a business owner, freelancer, or simply looking to
enhance your Excel skills, this tutorial is for you.

® What You'll Learn:

Set up the template: Create a dynamic Word document template with
placeholders.

Fetch customer data: Use Excel VBA to retrieve customer information from
your dataset.

Personalize letters: Automatically fill in customer details like name, address,
and more.

Calculate totals: Learn how to calculate and display the total outstanding
amount.

Automation benefits: Save time, improve accuracy, and send professional
letters effortlessly.

By the end of this tutorial, you'll have a powerful tool in your hands to
streamline your customer communication process and enhance your Excel
VBA skills. Don't miss out on this opportunity to simplify your workflow and
make a positive impact on your business. Let's dive in and revolutionize the
way you send reminder letters.

Download the code and resources:

www.gincoml/wixsite\index.com

Stay tuned for more tutorials and tips to supercharge your Excel productivity!
If you found this video helpful, don't forget to like, share, and subscribe for
more content.

Insert One List Box, Two Command Buttons and Few Labels. Change
name and caption of List box and command buttons from Property.

Create a Word Document and save it in the same folder as your Excel
Sheets, or you can opt to create a sub-folder specifically for Reminder
letters.

Start Coding :

Dim LbICustID As String, CustName As String, CustAdd As String
Dim CustCity As String, CustPIN As String, CustState As String
Dim TolAmt As Long

http://www.gincom1/wixsite/index.com

Declaring variables at the top of the code window is a common practice in
programming and has several advantages:

Readability: By declaring variables at the beginning of your code, it's easier
for you and other developers to understand the data that will be used in the
program.

Consistency: It creates a consistent structure in your code, making it easier
to maintain and modify.

Prevention of Errors: Declaring variables upfront helps in avoiding issues
like using a variable before it's assigned a value or mistakenly using the
same variable name for different purposes.

Documentation: It serves as a form of documentation, providing a clear list
of the variables being used in your program.

In this case, the code declares several variables at the beginning. This
approach is recommended as it helps you keep track of the variables
you'll be using throughout the program. It's a good practice that can
make your code more organized and less error-prone.

Command Button name is : CmdExt

Private Sub CmdExt_Click()
Unload Me
End Sub

The "CmdExt_Click" subroutine is designed to close or unload the current
user form when the corresponding button, likely named "CmdExt," is clicked.
This action helps provide a seamless user experience by allowing users to
exit or dismiss the form as needed.

Insert List Box and Name it : CustList

Private Sub CustListDisplay()

Dim wsCust As Worksheet

Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

Dim lastRow As Long

lastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xIUp).row

Dim rng As Range

Set rng = wsCust.Range("A2:J" & lastRow) ' Assuming data starts from
A2

CustList.Clear

CustList.List = rng.value

End Sub

The "CustListDisplay" subroutine is designed to populate a list box control
named "CustList" with customer data retrieved from the "Customer_Master"
worksheet. This subroutine helps display customer information in an
organized manner, allowing users to conveniently view and interact with the
data within the list box.

Here's how the subroutine works:

It first identifies the worksheet named "Customer_Master" within the current
workbook using the "Set wsCust =
ThisWorkbook.Worksheets("Customer_Master")" line.

It then determines the last populated row in column A of the
"Customer_Master" worksheet using "lastRow =

wsCust.Cells(wsCust.Rows.Count, "A").End(xIUp).Row". This helps
determine the range of data to be extracted.

The "rng" range is set to cover the data range from cell A2 to column J and
the last populated row using "Set rng = wsCust.Range("A2:J" & lastRow)".

The "CustList" list box control is cleared using "CustList.Clear" to ensure a
fresh start for populating data.

The data from the "rng" range is then assigned to the "CustList" list box
control using "CustList.List = rng.Value". This populates the list box with the
customer data retrieved from the specified range.

By executing the "CustListDisplay" subroutine, you're facilitating the display
of customer information within the "CustList" list box, providing users with an
organized and accessible way to view the data.

Private Sub UserForm_ Initialize()
CustListDisplay
CmdReminder.Enabled = False

End Sub

In the "UserForm_Initialize" event handler, you're initializing the user form
and setting up its initial state. Let's break down what each part of this code
does:

CustListDisplay: This line calls the "CustListDisplay" subroutine, which
populates the "CustList" Ilist box with customer data from the
"Customer_Master" worksheet. This ensures that when the user form is
initialized, the list box is populated with the relevant customer information.

CmdReminder.Enabled = False: This line disables (sets to "False") the
"CmdReminder" command button. This button is presumably used for
sending reminders, but since you have disabled it in the initialization, it won't
be clickable or usable until you enable it later in your code.

Overall, this initialization routine sets up the user form by loading customer
data into the list box and disabling the reminder command button at the start.
This ensures that users have access to the customer information but can't
trigger the reminder functionality until certain conditions are met in your
application's workflow.

Private Sub CustList_Click()
CustID = CustList.List(CustList.Listindex, 0)
CustName = CustList.List(CustList.ListIndex, 1)
CustAdd = CustList.List(CustList.Listindex, 2)
CustCity = CustList.List(CustList.Listindex, 3)
CustPIN = CustList.List(CustList.ListIndex, 4)
CustState = CustList.List(CustList.Listindex, 5)
Labell.Caption = CustID
Label2.Caption = CustName
Label3.Caption = CustAdd
Label4.Caption = CustCity
Label5.Caption = CustPIN
Label6.Caption = CustState
CmdReminder.Enabled = True

End Sub

This CustList_Click event handler is triggered when an item in the CustList
list box is clicked by the user. It performs the following actions:

It retrieves the customer details (ID, name, address, city, PIN, and state)
from the selected item in the list box using the List property and assigns them
to the respective variables (CustID, CustName, CustAdd, CustCity, CustPIN,
CustState).

It updates the caption of six labels (Labell through Label6) with the
corresponding customer details.

It enables the CmdReminder command button, allowing the user to trigger
the reminder functionality for the selected customer.

This event handler essentially provides a dynamic way of displaying
customer details when the user clicks on a customer's name in the list box,
and it prepares the user interface for sending a reminder to the selected
customer.

Insert a Command Button and Name it : CmdReminder

Private Sub CmdReminder_Click()

Dim WApp As New Word.Application
Dim WDoc As Word.Document
WApp.Visible = True

Set WDoc = WApp.Documents.Open(ThisWorkbook.Path & "\Reminder"
& ".docx")

Dim wsData As Worksheet

Set wsData = ThisWorkbook.Worksheets("Data")

This CmdReminder_Click event handler is triggered when the user clicks the
CmdReminder button. It initiates the process of creating reminder letters for
selected customers. Let's break down the code:

It creates a new instance of the Word application (WApp) and sets it to be
visible.

It opens the Word document named "Reminder.docx” located in the same
directory as the Excel workbook. This document will serve as the template
for the reminder letters.

It declares a worksheet variable (wsData) and sets it to refer to the "Data"
worksheet in the workbook. This worksheet is assumed to contain the data
related to customers and their payment statuses.

The code is setting up the environment for generating reminder letters by
opening the Word document template and establishing a connection to the
Excel data. The following steps will involve replacing placeholders in the
Word document with actual customer data and performing other necessary
operations to complete the reminder letters.

With WDoc.Content.Find
.Text = "#CustName#"
.Replacement. Text = CustName
.Execute Replace:=wdReplaceAll
.Text = "#CustomerAddress#"
.Replacement.Text = CustAdd
.Execute Replace:=wdReplaceAll
Text = "#City#"
.Replacement. Text = CustCity
.Execute Replace:=wdReplaceAll
Text = "#PIN#"
.Replacement. Text = CustPIN
.Execute Replace:=wdReplaceAll
.Text = "#State#"
.Replacement.Text = CustState

.Execute Replace:=wdReplaceAll

.Text = "<TotalAmt>"
.Replacement.Text = "TotAmt#"

.Execute Replace:=wdReplaceAll

End With

This part of the code is responsible for replacing placeholders in the Word
document template with actual customer data and the total amount. Let's
break down what each line does:

.Text = "#CustName#": Sets the search text to the placeholder
"#CustName#".

.Replacement. Text = CustName: Sets the replacement text to the value
stored in the CustName variable.

.Execute Replace:=wdReplaceAll: Executes the search and replace
operation for the currently set text.

This process is repeated for each placeholder in the document:
"#CustomerAddress#", "#City#", "#PIN#", "#State#", and "<TotalAmt>".

However, there's a small error in the replacement text for "<TotalAmt>":
.Replacement.Text = "TotAmt#" should be .Replacement.Text = TotAmit.

This way, the placeholder "<TotalAmt>" will be replaced with the value stored
in the TotAmt variable.

Once these replacements are done, the Word document will have
placeholders replaced with actual customer data.

The next step would involve performing the operations needed to calculate
the total amount (TotAmt) and then replacing the "<TotalAmt>" placeholder
with this calculated total amount.

#CustName#

#CustomarAddrass# Placeholder

#CityR-HPIN#
#State#

Subject: Reminder to Clear Qutstanding Dues

Wz underslind Wl here nighb L b reasons o e delay, bul kindly node thal groeml
nayrwnt ensures the smooth fanclioning of cur services anc belps mantain a hea thy
husiness ralationship We Kindly reqaest you 10 Sear tae ollowing aitstanding hills at
your €zrlizst conveniencs.

involce No Involce Date Involce Amount

!
We look forward to coninung our mutuglly bensficial association. Your promot
resporst m Cewnnyg e duecs will b orcally appecolod.
Thank you for chons nn 1o 0f A pat of anr networs
Frst renancs.

This iIs comment not code

Dim TableRow As Long ' Keep track of the current row index in the
table

TableRow = 2 ' Start populating data from the second row

TableRow: This variable is used to keep track of the current row index in the
Word table where data is being populated. It starts from the second row
(index 2) because the first row is typically reserved for headers. As data is
added to the table, the TableRow value is incremented to ensure that each
new piece of data is placed in the correct row.

TotalAmount: This variable is used to calculate the total amount of invoices
for the selected customer with payment status "N". It accumulates the invoice
amounts as the loop iterates through the data.

These definitions help manage the placement of data in the Word table and
calculate the total amount for the reminder letter.

Dim TotalAmount As Double ' To calculate the total amount

' Define the column numbers for relevant information (adjust as needed)
Dim CustIDCol As Long

Dim PaymentStatusCol As Long

Dim InvNoCol As Long

Dim InvDt As Long

Dim InvAmt As Long

Create variables to store field value.

CustIDCol =1 ' For example, column A
PaymentStatusCol = 8 ' For example, column H
InvNoCol =2 "' For example, column C
InvDt = 3
InvAmt = 4

Store data of Column Number from Excel sheet.

' Customer ID for which you want to print the letter

Dim TargetCustomerID As String
TargetCustomerID = Labell.Caption

TargetCustomerlID: This variable holds the Customer ID for which you want
to print the reminder letter. It takes its value from the caption of Labell, which
Is set when a customer is selected from the CustList ListBox.

" Filter and process data
Dim LastDataRow As Long

LastDataRow = wsData.Cells(wsData.Rows.Count,
CustIDCol).End(xIUp).row

LastDataRow: This variable is used to determine the last row containing data
in the wsData worksheet. It finds the last row by searching from the bottom
of the worksheet using the End(xlUp) method starting from the first column
(CustIDCol). This helps ensure that you're processing all the relevant rows
of data.

Dim tbl As Word.table
Set tbl = WDoc.Tables(1)

tbl: This variable holds a reference to the first table in the Word document
(WDoc). This table is where you'll be populating the data from the wsData
worksheet.

These declarations and definitions are crucial for filtering and processing the
data for the selected customer ID and payment status, and for working with
the Word table where the reminder letter content will be added.

For Datarow = 2 To LastDataRow ' Assuming data starts from row 2

For Datarow = 2 To LastDataRow: This is a loop that will iterate from row 2
to the value of LastDataRow. It means that the loop will go through all rows
of data in the wsData worksheet, starting from row 2 (assuming that's where
your data starts) and going up to the last row containing data (LastDataRow).

Datarow is the loop variable that will take on values from 2 to LastDataRow.
It represents the current row being processed in the loop.

The purpose of this loop is to go through each row of data in the worksheet
and perform the necessary operations, such as filtering based on the
customer ID and payment status, and adding relevant data to the Word
document's table.

Dim CustID As String
Dim PaymentStatus As String
Dim CustAddress As String
Dim InvNoCol2 As String
Dim InvDtCol3 As String
Dim InvAmtCol4 As String

CustID = wsData.Cells(Datarow, CustIDCol).value

PaymentStatus = wsData.Cells(Datarow, PaymentStatusCol).value
InvNoCol2 = wsData.Cells(Datarow, InvNoCol).value

InvDtCol3 = wsData.Cells(Datarow, InvDt).value

InvAmtCol4 = wsData.Cells(Datarow, InvAmt).value

The code declares and initializes several variables to store different pieces
of information for each row of data being processed in the loop. Here's what
each variable represents:

CustID: Stores the value of the customer ID for the current row.
PaymentStatus: Stores the value of the payment status for the current row.

CustAddress: This variable seems to be declared but not used in the
provided snippet.

InvNoCol2: Stores the value of the invoice number for the current row.
InvDtCol3: Stores the value of the invoice date for the current row.
InvAmtCol4: Stores the value of the invoice amount for the current row.

Each of these variables is assigned a value from the corresponding cell in
the wsData worksheet, based on the row index (Datarow) and the column
index (e.g., CustIDCol, PaymentStatusCol, etc.). These values are used later
in the code to populate the Word document's table and perform filtering
based on the customer ID and payment status.

If CustID = TargetCustomerID And PaymentStatus = "N" Then
tbl.Rows.Add ' Add a new row to the table

' Populate the cells with data

tbl.Cell(TableRow, 1).Range.Text = InvNoCol2
tbl.Cell(TableRow, 2).Range.Text = InvDtCol3
tbl.Cell(TableRow, 3).Range.Text = Format(InvAmtCol4, "0.00")

TotalAmount = TotalAmount + InvAmtCol4 ' Calculate the total
amount

TableRow = TableRow + 1
End If

Next Datarow

This part of the code is responsible for populating the Word document's table
with the filtered data for the specific customer ID and payment status "N."
Here's what each section does:

The If statement checks whether the current row's CustlID matches the
TargetCustomerID and if the PaymentStatus is "N." This is the filtering
condition to determine whether the current row's data should be added to the
Word document's table.

If the condition is met, a new row is added to the Word document's table
using tbl.Rows.Add.

The data from the relevant variables (InvNoCol2, InvDtCol3, and
InvAmtCol4) is then populated into the corresponding cells of the table using
the tbl.Cell method. The Format function is used to format the invoice amount
to have two decimal places.

The TotalAmount variable is updated by adding the current row's invoice
amount (InvAmtCol4) to it. This variable keeps track of the total amount for
the customer.

TableRow is incremented to prepare for populating the next row in the table.

Overall, this section of the code iterates through the filtered data, adds the
relevant rows to the Word document's table, populates the cells with the
data, and calculates the total amount for the customer.

' Add the total amount to the last row of the table
tbl.Cell(TableRow, 2).Range.Text = "Total Amount: "
tbl.Cell(TableRow, 3).Range.Text = Format(TotalAmount, "0.00")
TotAmt = Format(TotalAmount, "0.00")

WDoc.ExportAsFixedFormat ThisWorkbook.Path & "\" &
TargetCustomerID & ".pdf", wdExportFormatPDF

WDoc.SaveAs2 ThiswWorkbook.Path & "\" & TargetCustomerID & ".docx"
WDoc.Close

WApp.Quit
Set WDoc = Nothing
Set WApp = Nothing

he tbl.Cell(TableRow, 2).Range.Text and tbl.Cell(TableRow, 3).Range.Text
lines add the "Total Amount" label and the formatted total amount to the last
row of the table.

The TotAmt = Format(TotalAmount, "0.00") line assigns the formatted total
amount to the TotAmt variable.

WDoc.ExportAsFixedFormat exports the Word document as a PDF file using
the customer's ID as the file name.

WDoc.SaveAs?2 saves the Word document with the customer's ID as the file
name.

WDoc.Close closes the Word document.
WAPpp.Quit closes the Word application.

The Set statements are used to clear the object variables (WDoc and WApp)
to release resources.

This code completes the process of generating the reminder letter,
populating the data and total amount, saving the documents, and then
closing the Word application.

MsgBox "Reminder letter generated successfully!”, vbinformation,
"Success...Gautam Banerjee"

This line displays a message box to the user indicating that the reminder
letter was generated successfully.

On Error GoTo ErrorHandler ' Enable error handling

On Error GoTo O

Exit Sub ' Exit the sub here to prevent error handling from executing

ErrorHandler:
' Handle errors here
MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error"
' Optionally, log the error or take appropriate action

Resume Next ' Continue execution after handling the error

On Error GoTo ErrorHandler: This line enables error handling and tells VBA
to jump to the ErrorHandler label when an error occurs.

On Error GoTo 0: This line disables error handling. After successful
execution, you want to turn off error handling.

Exit Sub: This line exits the CmdReminder_Click procedure to prevent error
handling from executing when there's no error.

ErrorHandler:: This is a label indicating the start of the error handling section.

MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error": This
line displays an error message to the user, including the description of the
error.

Resume Next: This line tells VBA to continue execution after handling the
error.

You can customize the error handling code to match your specific needs,
such as logging errors or providing more detailed error messages.

Remember that error handling should be tailored to the context of your
application and the potential errors that might occur.

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

D@NAT Pay by UPI

9748327614

Copy and Paste Below Full Coding :

Dim LbICustID As String, CustName As String, CustAdd As String
Dim CustCity As String, CustPIN As String, CustState As String
Dim TolAmt As Long

Private Sub CmdExt_Click()
Unload Me
End Sub

Private Sub CmdReminder_Click()

On Error GoTo ErrorHandler ' Enable error handling

Dim WApp As New Word.Application
Dim WDoc As Word.Document
WApp.Visible = True

Set WDoc = WApp.Documents.Open(ThisWorkbook.Path & "\Reminder"
& ".docx")

' Original Data Sheet (Adjust the sheet name as needed)
Dim wsData As Worksheet
Set wsData = ThisWorkbook.Worksheets("Data")

With WDoc.Content.Find
.Text = "#CustName#"

.Replacement. Text = CustName
.Execute Replace:=wdReplaceAll
.Text = "#CustomerAddress#"
.Replacement.Text = CustAdd
.Execute Replace:=wdReplaceAll
.Text = "#City#"
.Replacement.Text = CustCity
.Execute Replace:=wdReplaceAll
Text = "#PIN#"
.Replacement.Text = CustPIN
.Execute Replace:=wdReplaceAll
.Text = "#State#"
.Replacement.Text = CustState
.Execute Replace:=wdReplaceAll
.Text = "<TotalAmt>"
.Replacement. Text = "TotAmt#"

.Execute Replace:=wdReplaceAll

End With

Dim TableRow As Long ' Keep track of the current row index in the table

TableRow = 2 ' Start populating data from the second row

Dim TotalAmount As Double ' To calculate the total amount

' Define the column numbers for relevant information (adjust as needed)
Dim CustIDCol As Long

Dim PaymentStatusCol As Long

Dim InvNoCol As Long

Dim InvDt As Long

Dim InvAmt As Long

' ... (@dd more column numbers as needed)

CustIDCol = 1 ' For example, column A
PaymentStatusCol = 8 ' For example, column H
InvNoCol = 2 ' For example, column C

InvDt = 3

InvAmt = 4

' Customer ID for which you want to print the letter
Dim TargetCustomerID As String
TargetCustomerID = Labell.Caption

' Filter and process data
Dim LastDataRow As Long

LastDataRow = wsData.Cells(wsData.Rows.Count,
CustIDCol).End(xIUp).row

Dim tbl As Word.table
Set tbl = WDoc.Tables(1)

For Datarow = 2 To LastDataRow ' Assuming data starts from row 2
Dim CustID As String
Dim PaymentStatus As String
Dim CustAddress As String
Dim InvNoCol2 As String
Dim InvDtCol3 As String
Dim InvAmtCol4 As String

CustID = wsData.Cells(Datarow, CustIDCol).value

PaymentStatus = wsData.Cells(Datarow, PaymentStatusCol).value
InvNoCol2 = wsData.Cells(Datarow, InvNoCol).value

InvDtCol3 = wsData.Cells(Datarow, InvDt).value

InvAmtCol4 = wsData.Cells(Datarow, InvAmt).value

" Add a condition to filter based on CustID and PaymentStatus

If CustID = TargetCustomerID And PaymentStatus = "N" Then
tbl.Rows.Add ' Add a new row to the table

' Populate the cells with data

tbl.Cell(TableRow, 1).Range.Text = InvNoCol2
tbl.Cell(TableRow, 2).Range.Text = InvDtCol3
tbl.Cell(TableRow, 3).Range.Text = Format(InvAmtCol4, "0.00")

' ... (populate other columns as needed)

TotalAmount = TotalAmount + InvAmtCol4 ' Calculate the total
amount

TableRow = TableRow + 1
End If

Next Datarow

' Add the total amount to the last row of the table
tbl.Cell(TableRow, 2).Range.Text = "Total Amount: "
tbl.Cell(TableRow, 3).Range.Text = Format(TotalAmount, "0.00")
TotAmt = Format(TotalAmount, "0.00")

WDoc.ExportAsFixedFormat Thisworkbook.Path & "\" &
TargetCustomerID & ".pdf*, wdExportFormatPDF

WDoc.SaveAs2 ThiswWorkbook.Path & "\" & TargetCustomerID & ".docx"
WDoc.Close
WApp.Quit

MsgBox "Reminder letter generated successfully!”, vbinformation,
"Success...Gautam Banerjee"

Set WDoc = Nothing
Set WApp = Nothing

On Error GoTo O
Exit Sub ' Exit the sub here to prevent error handling from executing

ErrorHandler:
' Handle errors here
MsgBox "An error occurred: " & Err.Description, vbExclamation, "Error"”
' Optionally, log the error or take appropriate action

Resume Next ' Continue execution after handling the error

End Sub

Private Sub CustListDisplay()

Dim wsCust As Worksheet
Set wsCust = ThisWorkbook.Worksheets("Customer_Master")

Dim lastRow As Long

lastRow = wsCust.Cells(wsCust.Rows.Count, "A").End(xIUp).row

Dim rng As Range

Set rng = wsCust.Range("A2:J" & lastRow) ' Assuming data starts from
A2

CustList.Clear

CustList.List = rng.value

End Sub

Private Sub CustList_Click()
CustID = CustList.List(CustList.Listindex, 0)
CustName = CustList.List(CustList.ListIndex, 1)
CustAdd = CustList.List(CustList.Listindex, 2)
CustCity = CustList.List(CustList.Listindex, 3)
CustPIN = CustList.List(CustList.ListIndex, 4)
CustState = CustList.List(CustList.Listindex, 5)
Labell.Caption = CustID
Label2.Caption = CustName
Label3.Caption = CustAdd
Label4.Caption = CustCity
Label5.Caption = CustPIN
Label6.Caption = CustState
CmdReminder.Enabled = True

End Sub

Private Sub UserForm_ Initialize()
CustListDisplay
CmdReminder.Enabled = False

End Sub

Gautam Banerjee

“Helping beginners learn something new is a great
way to share your knowledge and make a positive
impact”.

Email: gincom1l@yahoo.com

If you have any queries, please visit our "Contact Us" page.

Thank You. See you again!

Gautam Banerjee
Age: 63

D@NAT Pay by UPI

9748327614

